
SpatKin
User manual

1 Introduction 1
1.1 General description . 1
1.2 Computational approach . 1
1.3 Package overview . 1
1.4 Published applications . 2
1.5 Validation . 2

2 Input file 2
2.1 Input file sections . 2
2.2 Parameters section . 3
2.3 World section . 3
2.4 Regions section . 4
2.5 Molecule types section . 4
2.6 Seed species section . 5
2.7 Event rules section . 6
2.8 Observables section . 7
2.9 Simulation settings section . 7

3 Hints on the workflow 8
3.1 Model development . 8
3.2 Selected features of GUI . 8
3.3 Continuing a simulation . 9
3.4 Backing up results . 9
3.5 Trajectory visualization . 9

4 Tutorial models 9
4.1 Tutorial µmodel 1: Heterogeneous initial location of molecules 10
4.2 Tutorial µmodel 2: Diffusion-limited aggregation . 12
4.3 Tutorial µmodel 3: State-dependent removal from the membrane 13
4.4 Tutorial µmodel 4: Rule-based capabilities (1) . 14
4.5 Tutorial µmodel 5: Rule-based capabilities (2) . 16
4.6 Tutorial µmodel 6: Gradient formation . 18
4.7 Tutorial µmodel 7: Steady state controlled by diffusion 19
4.8 Tutorial µmodel 8: Ligand-induced receptor dimerization 20
4.9 Tutorial µmodel 9: Crowding-facilitated switch in a bistable system 22
4.10 Tutorial µmodel 10: Traveling wave . 24

A Compilation and deployment 26
A.1 Dependencies . 26
A.2 Building . 27
A.3 Deployment . 27

B Syntax 28
B.1 Identifiers . 28
B.2 Comments . 28
B.3 Grammars . 29

C Computational efficiency 33

D Predefined colors 34

SpatKin version: 1.0.0.
May 17, 2017

1 Introduction

1.1 General description
This manual describes SpatKin, software capable of performing stochastic simulations of reaction–
diffusion kinetics of biochemical systems on the membrane. The simulator offers rule-based modeling
capabilities and tracks individual molecules accounting for excluded-volume effects. An application
note describing SpatKin has been published in Bioinformatics, 2017.

1.2 Computational approach
The employed algorithm ensures exact state-to-state dynamics of the underlying time-continuous
Markov process: competing events, such as biochemical reactions and diffusive moves, are selected
from a catalog of all possible events and fired with propensities proportional to their respective rate
constants. The catalog of possible events is always complete as, after simulating any event, it is up-
dated by considering every possible new event that may happen in the updated system. Complete
updates are feasible due to the fact that the space is discretized using a triangular lattice. In one
step, a molecule can move to an adjacent empty lattice site, a unimolecular reaction can fire, or a bi-
molecular reaction can occur between molecules that are placed in adjacent lattice sites. Only events
defined by rules are allowed to occur. The network of possible interactions is evaluated on-the-fly
for existing molecular species according to the rules specified by the user (meaning that a complete
molecular interaction network does not need to be generated prior to the simulation). The method is
rejection-free unless there are special regions of diminished diffusivity defined on the lattice.

In the limit of infinite diffusion, the algorithmic approach is equivalent to the Gillespie algorithm
used for simulations of well-mixed systems; for fast diffusion and larger reactors, where the grain size
becomes irrelevant, simulation results correspond to that obtained with finite-element method-based
solvers for partial differential equations (PDEs). SpatKin can be viewed by a computer scientist as a
stochastic simulator of a cellular automaton or, by a physicist, as a Boltzmann lattice-gas simulator.

1.3 Package overview
SpatKin was developed to enable defining and studying computational models of cell signaling on
the membranes. The name stands for spatial kinetics. The software enables a user to write down
rules which define possible reactions, reducing the combinatorial explosion of possible states inherent
to definitions of many signaling systems (for an introduction to rule-based modeling see, e.g., Chylek
et al., 2014, Wiley Interdiscip. Rev. Syst. Biol. Med 6, 13–36). SpatKin does not share code but is
conceptually profoundly inspired by BioNetGen [Harris et al., 2016, Bioinformatics 32, 3366–68],
and patterns heavily on syntactic conventions of the BioNetGen Language (BNGL).

SpatKin is a suite of programs:
• Spatkin – is a graphical user interface (GUI, Qt-based) for two command line tools:
• spatkin-kernel – which is the core simulation program, and
• spatkin-mosaic – which produces graphical snapshots out of binary trajectories.

The GUI provides a syntax-aware code editor and a convenient wrapper for command-line utilities, as
well as tools for tasks such as trajectory viewing and preliminary result evaluation.

Source code, written in C++, is available under the terms of the GNU Lesser General Public License
(LGPL) version 3.0 and, along with binary executables for Windows and Mac, can be retrieved from
the project homepage: http://pmbm.ippt.pan.pl/software/spatkin (this permalink currently redirects
to http://pmbm.ippt.pan.pl/web/Spatkin).

1

http://dx.doi.org/10.1002/wsbm.1245
http://www.bionetgen.org
http://dx.doi.org/10.1093/bioinformatics/btw469
http://www.gnu.org/licenses/lgpl-3.0.txt
http://www.gnu.org/licenses/lgpl-3.0.txt
http://pmbm.ippt.pan.pl/software/spatkin
http://pmbm.ippt.pan.pl/web/Spatkin

1.4 Published applications
Preliminary versions of SpatKin have been used to study simple models of stochastic reaction–diffusion
kinetics of kinases and phosphatases reacting on the membrane described in:

• Nałęcz-Jawecki P, Szymańska P, Kochańczyk M, Miękisz J, Lipniacki T: Effective
reaction rates for diffusion-limited reaction cycles Journal of Chemical Physics 143(21), 215102
(2015).

• Szymańska P, Kochańczyk M, Miękisz J, Lipniacki T: Effective reaction rates in diffusion-
limited phosphorylation–dephosphorylation cycles. Physical Review E 91, 022702 (2015).

• Kochańczyk M, Jaruszewicz J, Lipniacki T: Stochastic transitions in a bistable reaction
system on the membrane. Journal of the Royal Society Interface 10(84), 20130151 (2013).

• Zuk PJ, Kochańczyk M, Jaruszewicz J, Bednorz W, Lipniacki T: Dynamics of a stochas-
tic spatially extended system predicted by comparing deterministic and stochastic attractors of
the corresponding birth–death process. Physical Biology 9(5), 055002 (2012).

1.5 Validation
The simulator has been validated in the limit of infinite and in the limit of zero diffusion. In both these
limits, the analytically calculated amounts of molecules in each molecular state in the steady state and
reaction channel firings per unit time agree perfectly [Szymańska et al., 2015, Phys. Rev. E 91, 022702].
For finite diffusion, analytical estimates for effective macroscopic reaction rates and simulation results
agree well [Nałęcz-Jawecki et al., 2016, J. Chem. Phys. 143, 215102].

2 Input file
Input files are plain-textual files with extension .spatkin. The contents of an input file is interpreted
imperatively, meaning that statements in sections are treated as commands and are evaluated “eagerly.”
Technically, the commands are realized as semantic actions of a recursive-descent LL(k) parser with
the side-effects-free look-ahead. This imposes some intuitive restrictions on the order of appearance of
sections in the whole input file and of their constituent elements. The code is read in a free-format:
what matters is the order of tokens. An input file can contain comments which are skipped by the
parser. Wherever possible, SpatKin strives to follow conventions of BNGL, but with a handful of
exceptions (described later).

2.1 Input file sections
Every .spatkin file must contain sections that define parameters, properties of the 2-D simulation box
(“world”), initial configuration of molecules, rules of allowed events, observables, and simulation set-
tings:

• parameters section,
• world section,
• regions section,
• molecule types section,

• seed species section,
• event rules section,
• observables section,
• simulation settings section.

The expected order of the sections is defined in the program grammar (in Appendix B). Several
complete example “programs” are included in the Tutorial models section.

2

http://dx.doi.org/10.1063/1.4936131
http://dx.doi.org/10.1063/1.4936131
http://dx.doi.org/10.1103/PhysRevE.91.022702
http://dx.doi.org/10.1103/PhysRevE.91.022702
http://dx.doi.org/10.1098/rsif.2013.0151
http://dx.doi.org/10.1098/rsif.2013.0151
http://dx.doi.org/10.1088/1478-3975/9/5/055002
http://dx.doi.org/10.1088/1478-3975/9/5/055002
http://dx.doi.org/10.1088/1478-3975/9/5/055002
http://dx.doi.org/10.1103/PhysRevE.91.022702
http://dx.doi.org/10.1063/1.4936131

2.2 Parameters section
The parameters section specifies numeric values to be used as:

• reaction rate constants,
• numbers/occupancies of seed species,

• world dimensions,
• molecular weights, etc.,

in the world, molecule types, seed species, and event rules sections.

begin parameters
k 10.
k1 1./3.
k2 k
k3 3.14159*(k1/k2 + 2.71828)
nA 100
nB 1e2*nA

end

Listing 1: Parameters section example.

Parameter values can be written in the usual form (e.g., 100, 0.0025) or using exponential notation
(e.g. 1e2, 2.5E-3). Parameters can be evaluated on-the-fly based on values of previously defined (and
immediately evaluated) parameters. Parameters cannot be reassigned. Arithmetic types are always
promoted to the real, double-precision type when performing arithmetic operations, so for example
22/7 is 3.142857… Infix operators +, –, *, / take normal precedence, brackets can be used to enforce the
order of evaluation. Computed parameter values are printed to the standard output by the command-
line kernel executable. Appendix B contains a formal grammar of the parameters section.

2.3 World section
This section primarily sets the size and shape of the lattice, that is the number of lattice nodes in both
spatial dimensions.

begin world
topology plane
size 100 100
random seed 42

end

Listing 2: World section example.

The planar topology entails periodic boundary conditions (left–right and top–bottom). Reflecting
boundary conditions can be obtained simply by defining two stripes of zero diffusivity at two edges
(see the regions section).

By optionally varying the seed for the random number generator of the “world” one can generate
diverse initial configurations of molecules. By keeping the same seed for a series of simulations it is
possible to start every time from identical initial conditions. If the seed is not specified, the random
number generator is seeded based on the current time (at the single-second resolution)1. Appendix B
contains a formal grammar of the world section.

1Currently, the random number generator for the initial placement of molecules is the standard system rand().The
random number generator of the simulation engine is Mersenne twister that is seeded separately (see the simulation
settings section).

3

2.4 Regions section
Regions, shapes of which can be circular, rectangular, or consisting of a set of individually listed cells
can be defined to locally modify diffusivity or to restrict initial placement of molecules to specific areas.

begin regions
LeftRegion circle 10 25 8
RightArea rectangle 27 20 30 10
CCC cells 20,30; 40,20; 12,12
rX !RightArea
rY ((LeftRegion + !RightArea) * RightArea)

end

Listing 3: Regions section example.

Centers of circles and rectangles are provided as first two parameters of a region definition, and
the radius or width and height, respectively, are given subsequently. There is also a special region
type which allows for defining regular grids over the whole “world.” By decreasing diffusivity in such
a grid-like region one can easily delineate multiple semi-permeable compartments.

As in constructive solid geometry, it is possible to perform usual set-algebraic operations on regions
(treated as sets of lattice nodes), see Table 1.

Operator Meaning
!a complement of set a
(a+ b) sum of sets a and b
(a ∗ b) intersection of sets a and b
(a− b) subtraction of b from a
(a ˆ b) symmetric difference of a and b

Table 1: Algebraic operators for regions. Precedence is the same as of arithmetic operators; brackets must be
used for two-argument operators and can be used to enforce the order of evaluation.

Definitions of regions cannot be changed during the simulation. Computed volumes of regions, with
respect to both molecules and immobile binders (see a section on molecule types for an explanation
of the distinction), are printed out on the standard output by the kernel executable. Regions can
be referenced by their identifiers in the regions, seed species, and event rules sections. Appendix B
contains a formal grammar of the regions section.

2.5 Molecule types section
In this section chemical entities are defined by specifying their names and names of their sites.

begin molecule types
N() # This molecule has no sites.
A(a,b,c) # This molecule has three sites.
B(c) weight 5
C(b) weight 3
D(d1)[2] # This molecule can engage 2 binders.
L[3] # This binder can engage 3 molecules.

end

Listing 4: Molecule types section example. In case the molecules C and D create a complex that is allowed to
dissociate, molecule C has 37.5% chance of staying in the old lattice node after associationwith/dissociation
from D (62.5% chance).

4

There are two kinds of chemical entities: molecules, which represent membrane-tethered proteins
and occupy hexagonal tiles of the lattice (equivalently: triangular lattice nodes); and immobile binders,
which occupy the dual lattice (i.e., the hexagonal lattice). The main difference between these two types
of entities is that (regular) molecules can possess sites capable of assuming states dependent on, e.g.,
their phosphorylation level and capable of binding to sites of other molecules, whereas binders have
no internal state (no sites) and can only bind regular molecules using 1, 2, or 3 chemically equivalent
binding sites. The binders are inspired by immunogenic ligands that induce receptor dimerization/-
clusterization and immobilization, and are thus immobile.

Figure 1: Lattice confinement of molecules and immo-
bile binders. Top left: A molecule (orange) in a site of
a triangular lattice can hop to one of unoccupied ad-
jacent lattice sites. Top right: A molecule can jump
to an occupied adjacent lattice site (red arrow) only
when a complex formation reaction is allowed and such
an event has been selected. Bottom: Movements of a
molecule bound to an immobile binder (blue), which is
a distinct kind of molecule, and as such is placed in a
node of a dual lattice, are constrained so that the bond
is not broken.

A single lattice node may contain: no
molecules, or a single (whole) molecule, or one
complex (comprising several bound molecules).
Because of the steric constraints of the triangu-
lar lattice, any molecule can have up to 6 other
molecules and 6 binders as neighbors, and any
binder can be adjacent to maximally 3 molecules
(see Fig. 1).

All sites in a single molecule must have unique
names. This limitation disallows molecules hav-
ing some symmetry, which appear usually in
models of aggregation – SpatKin is not suit-
able for such systems, as, by convention, all the
molecules that are connected by bonds (com-
plexes) occupy just a single lattice node. After
dissociation, one of reaction products is moved to
an adjacent lattice site. The optional molecular
weight property is used to specify the probabil-
ity of staying in the old node vs. moving to an
adjacent node: probability of not moving of a dis-
sociation product is proportional to the weight fraction in the total weight of the molecular complex.
Default weight of a single molecule is 1.

One doesn’t have to specify possible phosphorylation states of sites in the molecule types section –
they are inferred from reaction rules. SpatKin does not distinguish between phospo-sites and binding
sites. Appendix B contains a formal grammar of the molecule types section.

2.6 Seed species section
This section defines initial conditions in the form of initial states of molecules: their phosphorylation
states or bonds, abundance and, optionally, initial region (as defined in the world section).

begin seed species
Y(d∼U) 1000
X(x) 10 # site x can be used for binding, but cannot change its phospho-state
A(b!1) . B(a!1) 100
A(x∼pY) nA in region CompartmentA
T(sh3∼pY) occupancy 1.0 in region Region3
L[@,@,@] 50 # `at' signs denote three unbound binder sites

end

Listing 5: Seed species section example. In the example, CompartmentA and Region3 are assumed to be
defined in the regions section, and nA is assumed to be defined in the parameters section. Occupancy 1.0
causes the region Region3 to be filled completely with T molecules.

5

Phosphorylation states can be assigned with:
• ∼U (aliases: ∼u, ∼Y) – for sites which are not phosphorylated,
• ∼P (aliases: ∼p, ∼pY) – denoting a monophosphorylated site,
• ∼PP (aliases: ∼pp, ∼ppY) – to mark a bisphosphorylated site.

Inter-site bonds are specified by a pair of exclamation marks followed by a bond number.

Definition Pattern Concrete
phospho binding phospho binding

A(a) any no no no
A(a∼P) yes (single) no yes (single) no
A(a∼U!1) no yes no yes∗
A(a!?) any any — incorrect —
A(a∼PP!+) yes (double) yes — incorrect —

Table 2: Example molecule/site definitions and their semantics. ∗Correct if a molecule to which it is bound is
defined nearby with a matching bond number.

Sites must be listed in the same order as in the seed species section. Complexes of molecules are
placed in a single cell; it’s one of SpatKin’s inherent conventions. If the state of a site is not given,
it is assumed to be unphosphorylated and unbound. Molecules can be initially placed in a predefined
region (if there is not enough space to place molecules in a requested region, kernel will complain).
Appendix B contains a formal grammar of the seed species section.

2.7 Event rules section
This section provides definitions of molecular patterns and associated events in a convention nearly
identical to that of BioNetGen language (BNGL) the only exception being that patterns of molecular
complexes must have their bonds wired explicitly. Reactions can involve one or two molecules (or
molecular complexes) and can be uni- or bidirectional. In a simulation, bimolecular reactions can occur
only between molecules (or molecular complexes) localized in adjacent lattice nodes. Parameters for
bidirectional reactions are given for the forward and then for the backward reaction.

begin event rules

"Movement of any A":
>> A() m

This is a comment; below, we define an unnamed rule
(which will be referred to as rule "2" in the output).
A(b!1) . B(a!1) -> A(b) + B(a) k

C() + A(x∼U) <->
C() + A(x∼P) kfast,kslow

K(m,k∼U) + M(k) <-> K(m!1,k∼U) . M(k!1) kp1,km1

"Binding of K & M", "Unbinding of K & M":
K(m,k∼P) + M(k) <-> K(m!1,k∼P) . M(k!1) kp2,km2

++ Lig[@] 3
-- Lig[@] 3

6

+! A()[@] & Lig[] 30
+! A()[@!+] & Lig[] 300
-! A()[@!+] & Lig[@!+] 10

end

Listing 6: Example event rules section.

Here, the syntax of BNGL has been extended to account additionally for molecular diffusion and
interactions with binders. Molecules or molecular complexes that are bound to a single binder can
move only in the way that does not break the bond (adjacently to the binder), see Fig. 1. Molecules or
molecular complexes that are bound to two binders are immobilized. Movements, (dis)appearance of
molecules and appearance of binders, and molecule–binder (un)binding rules are defined using a prefix
notation whereas reactions are defined using a middle-arrow notation.

Each rule can be optionally named. Unnamed rules are assigned names from their ordinal numbers.
After simulation, the number of times a given rule was used to generate an event is printed in a summary
statistics file (optional rule naming helps reading this file). Appendix B contains a formal grammar of
the event rules section.

2.8 Observables section
In this section, molecules in specific states (“observables”), which are of interest, can be defined. All
molecules matching defined observable patterns are counted and their count is printed to a log file (of
column-based textual format).

begin observables
A_every A() group A
A_unbound A(a) color 0.85,0.0,0.0 group A
A_bound A(a!+) color gold group A,B
A_maybe_bound A(a!?) color lightgray group A,B
L_u Lig[@,@,@] color gray
L_b Lig[@,@,@!+] color yellow
L_bb Lig[@,@!+,@!+] color orange
L_bbb Lig[@!+,@!+,@!+] color red

end

Listing 7: Example observables section.

Defining observables that are parts of complexes can be attained using the notation for the bond
to any molecule, !+.

Observables can be grouped; then trajectory snapshots can be displayed separately for each group.
To further facilitate visual analysis of snapshots, optionally, a color can be assigned to a molecule or
binder: any color from the RGB color space can be defined by giving its red, green, blue components
(from the range [0,1] after keyword rgb) or by using one of predefined X11 or SVG color name (for a
complete list of names see Appendix D). Appendix B contains a formal grammar of the observables
section.

2.9 Simulation settings section
This section controls duration of the simulation and logging frequency.

Description (optional) will be literally copied to a log file. Halting condition can be specified by
the total simulation time or the total number steps. Logging times are uniformly spaced over the
simulation time in case of specifying the number of observer intervals or the interval time, and not in

7

https://en.wikipedia.org/wiki/X11_color_names#Color_name_chart
http://www.w3.org/TR/css3-color/#svg-color

begin simulation
description "My model 101"
time end 100 # a hundred Monte Carlo seconds
observer intervals 50 # writing down observables in fifty time points
snapshots off # disable dumping spatial trajectory
random seed 4242

end

Listing 8: Example simulation settings section.

case of the number of steps. Writing out trajectory can be disabled (also automated post-simulation
generation of images can be disabled in GUI, in menu Settings). The random number generator seed
influences the order of simulated events but does not affect the way in which molecules are inserted
into the lattice. Appendix B contains a formal grammar of the simulation settings section.

3 Hints on the workflow

3.1 Model development
SpatKin stochastic simulation algorithm is an exact method, meaning that in the infinite diffusion
limit becomes equivalent to the Gillespie algorithm. In a single time step, SpatKin simulates one
random event. In principle, it’s impossible to parallelize the execution of the algorithm and at the
same time preserve its exactness. If diffusivity of molecules is much faster than reaction rates or when
the simulated system is dilute, a lot of compute power is devoted to simulating diffusion (hopping on
the lattice). To alleviate high computational requirements for model development and tuning, it is
recommended to develop first a non-spatial version of the model (e.g., in BioNetGen) and then port
it to SpatKin, taking into account existing discrepancies between the two tools—see Table 3.

Feature BioNetGen SpatKin
1) States of molecular sites Any declared by user Limited set: ∼U, ∼P, ∼PP
2) Identical molecular sites Allowed Allowed in immobile binders
3) States in molecule types section Required Not required
4) General rule syntax Infix Infix (reactions), prefix (other events)
5) Implicit intermolecular bonds Supported Not supported
6) >1 reaction in one rule Allowed Not allowed
6) >1 protomer in complex observable Allowed Not allowed
7) Rule naming syntax MY_RULE_1: "My rule 1":
8) Grouping of observables Not supported Supported

Table 3: Juxtaposition of discrepant BioNetGen and SpatKin capabilities and syntactic conventions.

3.2 Selected features of GUI
The main window features a multiple document interface (MDI) and thus can have multiple model
files open and multiple stochastic simulations running simultaneously. If a simulation is forced to
stop, partial results (including trajectory) are amenable to analysis. The last state of the simulated
system at the moment of interruption is saved to a file Final.spatkin. In menu Settings one can disable
automated post-simulation generation of images from the trajectory. In the code editor window,
which is an MDI child of the main GUI window, after typing color an in-place drop-down list of
predefined color names should appear (for the full list of color names see Appendix D).

8

The plot window that shows how amounts of declared observables evolve in time can be zoomed
in by dragging mouse pointer over the drawing area; the point when the left mouse button is pressed
and the point when it is released are used to define a rectangle to zoom in. By clicking with the right
mouse button, the original plot ranges are restored. Lines corresponding to individual observables
can be hidden or shown by toggling legend captions in the top-right window corner. Similarly, in the
histogram window, legend captions can be toggled to hide/unhide box-plots of choice. Clicking on
a sector of the pie-chart displayed in the statistics windows highlights a corresponding rule in the
table next to the pie-chart. The trajectory window can show observables in separate groups (iff such
groups were defined in the observables section), which significantly aids visual analysis. Trajectory
can be played forth and back using arrow keys (first the slider may need to receive focus by clicking
on it; press Ctrl or Mac’s ⌘ to skip frames).

3.3 Continuing a simulation
When a simulation is finished or interrupted, a Final.spatkin file is generated. The generated file has
the structure of an input file, where in the seed species section locations and states of all molecules at
the last time step are saved. Such a file with initial conditions taken from the end of one simulation
can be used as an input file to run a new simulation.

3.4 Backing up results
When a new simulation is initialized, to store trajectory and other generated files a new directory is
created with a name of the input file without the file name extension (.spatkin). If such folder already
exists, to prevent overwriting previous results, it will be renamed by adding a suffix that reflects its
creation time (in this way, the folder containing files of the most current run has the simplest name
devoid of time-stamps). When closing an input file in GUI, the presence of corresponding time-stamped
directories is checked and then it’s possible to remove them in bulk.

3.5 Trajectory visualization
The trajectory of a simulated system is written to a binary file (with a textual, user-editable header),
that is internally compressed. The trajectory file extension is spt. A separate tool, spatkin-mosaic, is
necessary to read a trajectory and generate corresponding images. The tool can generate both vector-
and raster-based images. A list of supported formats and other options can be displayed by issuing
the command ./spatkin-mosaic --help.

4 Tutorial models
All “µmodels” presented in this section are shown in the form of complete, runnable input files. Raw
.spatkin input files can be found in the source code distribution (in doc/examples/tutorial).

9

4.1 Tutorial µmodel 1: Heterogeneous initial location of molecules
This example (see Listing 9) shows how user-defined regions can be used to place molecules in a non-
homogeneous manner on the lattice. One region is used to constrain the initial placement of molecules
A(x∼U,y∼U) (drawn grey), at time=0; other regions are filled with molecules B (red) and C (blue) in
the course of simulation according to a temporally constrained emergence rule. Molecules B modify
molecules A(x∼U,y∼U) into A(x∼P,y∼U) – green. Molecules C modify molecules A(x∼U,y∼U) into
A(x∼U,y∼P) – yellow. Molecules A and B degrade slowly. Simulation shows how polarization can be
introduced to the system and how it vanishes due to diffusion.

begin parameters
m 3
m2 10 k 0.1 # This is a free-format text, meaning that line breaks
r 10 q 0.01 # do not matter.

end

begin world
topology plane size 200 200

end

begin regions
Two basic primitives for defining regions are circles and rectangles.
CircRgn circle 100 100 50 # centerX centerY radius
RectRgn rectangle 100 150 200 100 # centerX centerY width height

Typical constructive geometry operations are supported:
RgnX !CircRgn # !a =: complement of set a
RgnY (CircRgn * RectRgn) # (a * b) =: intersection of a and b
RgnZ (CircRgn - RectRgn) # (a - b) =: subtraction of b from a

end

begin molecule types
A(x,y) B() C()

end

begin seed species # Number of molecules or frac-
A(x∼U,y∼U) occupancy 0.1 in region RgnX # tional (region) occupancy

end # should be given here.

begin event rules
Diffusion, molecule emergence and degradation rules have prefix syntax.
>> A() m # |
>> B() m2 # >- diffusion
>> C() m2 # |

Following 2 rules for molecule insertion are both spatially and
temporally constrained; effective rate of insertion is proportional
to the number of unoccupied lattice nodes (here, in a region):
++ B() k in region RgnY since 5 until 8
++ C() k in region RgnZ since 5 until 8

10

B() + A(x∼U,y∼U) -> B() + A(x∼P,y∼U) r
C() + A(x∼U,y∼U) -> C() + A(x∼U,y∼P) r

-- B() q -- C() q # Molecules B, C are degraded with rate q.
end

begin observables
A A(x∼U,y∼U) color lightgrey # All observables that
Ax A(x∼P,y∼U) color green # have assigned colors
Ay A(x∼U,y∼P) color gold # are recorded in the
B B() color red # trajectory file.
C C() color blue #

end

begin simulation
time end 300 # Total duration (in simulation time units).
observer intervals 100 # No. time points at which logging occurs.

end

Listing 9: Tutorial input file 1 (doc/examples/tutorial/01-regions.spatkin).

11

4.2 Tutorial µmodel 2: Diffusion-limited aggregation
This example (Listing 10) demonstrates diffusion-limited aggregation in just 3 (effectively 2) rules
(rules of zero rate are omitted).

begin parameters
m 10
kfast 10000

end

begin world
topology plane size 120 120

end

begin regions
Seeds cells 20,30; 70,20; 82,82 # Region consists of single lattice nodes.

end

begin molecule types
Particle(mobile)

end

begin seed species
Particle(mobile∼U) occupancy 1.0 in region Seeds # confined to a region
Particle(mobile∼P) occupancy 0.2 # distributed uniformly

end

begin event rules

"Gogogo!":
>> Particle(mobile∼P) m # A named rule for diffusion.

>> Particle(mobile∼U) 0 # Anonymous rule (referred to as rule "2").

According to the above rules, diffusivity of a molecule depends on its state.

Particle(mobile∼P) + Particle(mobile∼U) ->
Particle(mobile∼U) + Particle(mobile∼U) kfast

end

begin observables
frost Particle(mobile∼P) color lightgreen # An array of observables colors
snow Particle(mobile∼U) color orangered # has been predefined for user's

end # convenience (see Appendix D).

begin simulation
time end 100 # If there are no more events, a warning will be issued.
observer intervals 200

end

Listing 10: Tutorial input file 2 (doc/examples/tutorial/02-aggregation.spatkin).

12

4.3 Tutorial µmodel 3: State-dependent removal from the membrane
This example (Listing 11) is inspired by the fact that lipid modification, such as palmitoylation or
farnesylation, can affect membrane attachment of proteins; for example, G protein α subunit is de-
palmitoylated upon stimulation and then translocates to cytosol.

begin parameters
m1 10 b 1 d 10 u 10 x 0.1

end

begin world
topology plane size 100 100

end

begin regions
end

begin molecule types # By defining relative molecular weights in
Thioesterase(a) weight 1 # this manner, we assure that Thioesterase,
AlphaS(palmito) weight 0 # which is assumed immobile, does not move

end # upon binding/unbinding AlphaS.

begin seed species
AlphaS(palmito∼P) 1000 # site `palmito' defined explicitly as unbound
Thioesterase(a) 10 # site `a' defined explicitly as unbound

end

begin event rules
>> Thioesterase(a) 0 # assumed immobile
>> AlphaS(palmito) m1 # assumed mobile
Thioesterase(a) + AlphaS(palmito∼P) -> Thioesterase(a!1).AlphaS(palmito∼P!1) b
Thioesterase(a!1).AlphaS(palmito∼P!1) -> Thioesterase(a!1).AlphaS(palmito∼U!1) d
Thioesterase(a!1).AlphaS(palmito∼U!1) -> Thioesterase(a) + AlphaS(palmito∼U) u
-- AlphaS(palmito∼U) x # removal of depalmitoylated AlphaS from membrane

end

begin observables
A_palmi AlphaS(palmito∼P!?) color lightpink # '?!' means that the status of
A_depalmi AlphaS(palmito∼U!?) color red # binding is irrelevant here
T Thioesterase() color darkblue

end

begin simulation
description "Depalmitoylation v0.1" # Descriptions are copied into results.
duration 300 # Bimolecular complexes can be occasionally
observer intervals 100 # seen in the trajectory as split hexagons.

end

Listing 11: Tutorial input file 3 (doc/examples/tutorial/03-depalmitoylation.spatkin).

13

4.4 Tutorial µmodel 4: Rule-based capabilities (1)
This example (Listing 12) demonstrates rule-based capabilities.

Each molecule S (“substrate”) can be independently phosphorylated on 10 residues, meaning that S
may assume one of 210 = 1024 phosphorylation states. Residues A, B, C, D, E can be phosphorylated
by kinase K1 which is recruited and remains tethered in the circular region RgnL; residues F, G, H,
I, J can be phosphorylated by kinase K2 that is recruited and remains tethered in the circular region
RgnR (in this way, occurrence of several second-order reactions is constrained spatially). To become
phosphorylated on all residues (dark red observable), S must visit both regions.

In the absence of phosphatase activity (parameter ku = 0), all S are ultimately phosphorylated but
even a weak activity of uniformly distributed phosphatases (parameter ku = 0.01) prevents simulta-
neous phosphorylation of S on all residues.

begin parameters
m 10. # diffusivity
kadd 0.1 # insertion rate
kp 10. # kinase activity
ku 0.0 # phosphatase activity <-- CHOOSE: ku=0 or ku=0.01
occuS 0.1 # substrate occupancy
occuP 0.03 # phosphatase ocupancy

end

begin world
topology plane size 200 100

end

begin regions
RgnL circle 50 50 30
RgnR circle 150 50 30

end

begin molecule types
S(A,B,C,D,E,F,G,H,I,J) # a multi-site substrate
K1() # a kinase
K2() # another kinase
P() # a phosphatase

end

begin seed species
S(A∼U,B∼U,C∼U,D∼U,E∼U,F∼U,G∼U,H∼U,I∼U,J∼U) occupancy occuS
P() occupancy occuP

end

begin event rules

>> S() m # By omitting diffusive rules for K1 and K2, they are
>> P() m # made immobile.

K1() + S(A∼U) -> K1() + S(A∼P) kp
P() + S(A∼P) -> P() + S(A∼U) ku

14

K1() + S(B∼U) -> K1() + S(B∼P) kp
P() + S(B∼P) -> P() + S(B∼U) ku

K1() + S(C∼U) -> K1() + S(C∼P) kp
P() + S(C∼P) -> P() + S(C∼U) ku

K1() + S(D∼U) -> K1() + S(D∼P) kp
P() + S(D∼P) -> P() + S(D∼U) ku

K1() + S(E∼U) -> K1() + S(E∼P) kp
P() + S(E∼P) -> P() + S(E∼U) ku

K2() + S(F∼U) -> K2() + S(F∼P) kp
P() + S(F∼P) -> P() + S(F∼U) ku

K2() + S(G∼U) -> K2() + S(G∼P) kp
P() + S(G∼P) -> P() + S(G∼U) ku

K2() + S(H∼U) -> K2() + S(H∼P) kp
P() + S(H∼P) -> P() + S(H∼U) ku

K2() + S(I∼U) -> K2() + S(I∼P) kp
P() + S(I∼P) -> P() + S(I∼U) ku

K2() + S(J∼U) -> K2() + S(J∼P) kp
P() + S(J∼P) -> P() + S(J∼U) ku

++ K1() kadd in region RgnL since 1.0 until 3.0
++ K2() kadd in region RgnR since 5.0 until 7.0

end

begin observables
S_10u S(A∼U,B∼U,C∼U,D∼U,E∼U,F∼U,G∼U,H∼U,I∼U,J∼U) color blue
S_5pNterm S(A∼P,B∼P,C∼P,D∼P,E∼P,F∼U,G∼U,H∼U,I∼U,J∼U) color gold
S_5pCterm S(A∼U,B∼U,C∼U,D∼U,E∼U,F∼P,G∼P,H∼P,I∼P,J∼P) color pink
S_10p S(A∼P,B∼P,C∼P,D∼P,E∼P,F∼P,G∼P,H∼P,I∼P,J∼P) color darkred
K1 K1() color black
K2 K2() color dimgrey
P P() color green

end

begin simulation
time end 500
observer intervals 100

end

Listing 12: Tutorial input file 4 (doc/examples/tutorial/04-rule_based_1.spatkin).

15

4.5 Tutorial µmodel 5: Rule-based capabilities (2)
This example (Listing 13) is a further demonstration of rule-based capabilities and extends the previous
example. Additionally here, independently of their phosphostate, molecules S can form homodimers,
so there are (210)2/2 ≃ over half a million potential homodimer species (more than molecules in the
simulation). Dimers in which one protomer is phosphorylated on A, B, C, D, E and the other is
phosphorylated on F, G, H, I, J are stabilized (not allowed to dissociate).

begin parameters
m 10. # diffusivity
kadd 0.1 # insertion rate
kp 10. # kinase activity
ku 0.0 # phosphatase activity <-- CHOOSE: ku=0 or ku=0.01
occuS 0.1 # S occupancy
occuP 0.03 # phosphatase ocupancy
b 1 # S homodimerization
d 1 # S-S un-dimerization
stb 100 # S-S homodimer stabilization

end

begin world
topology plane size 200 100

end

begin regions
RgnL circle 50 50 30
RgnR circle 150 50 30

end

begin molecule types
S(A,B,C,D,E,F,G,H,I,J,dim,stable)
K1() K2() P()

end

begin seed species
S(A∼U,B∼U,C∼U,D∼U,E∼U,F∼U,G∼U,H∼U,I∼U,J∼U,dim,stable∼U) occupancy occuS
P() occupancy occuP

end

begin event rules
>> S() m
>> S(dim!1).S(dim!1) m # diffusion of S-S dimer
>> P() m

K1() + S(A∼U) -> K1() + S(A∼P) kp
P() + S(A∼P) -> P() + S(A∼U) ku

K1() + S(B∼U) -> K1() + S(B∼P) kp
P() + S(B∼P) -> P() + S(B∼U) ku

K1() + S(C∼U) -> K1() + S(C∼P) kp

16

P() + S(C∼P) -> P() + S(C∼U) ku

K1() + S(D∼U) -> K1() + S(D∼P) kp
P() + S(D∼P) -> P() + S(D∼U) ku

K1() + S(E∼U) -> K1() + S(E∼P) kp
P() + S(E∼P) -> P() + S(E∼U) ku

K2() + S(F∼U) -> K2() + S(F∼P) kp
P() + S(F∼P) -> P() + S(F∼U) ku

K2() + S(G∼U) -> K2() + S(G∼P) kp
P() + S(G∼P) -> P() + S(G∼U) ku

K2() + S(H∼U) -> K2() + S(H∼P) kp
P() + S(H∼P) -> P() + S(H∼U) ku

K2() + S(I∼U) -> K2() + S(I∼P) kp
P() + S(I∼P) -> P() + S(I∼U) ku

K2() + S(J∼U) -> K2() + S(J∼P) kp
P() + S(J∼P) -> P() + S(J∼U) ku

S(dim) + S(dim) -> S(dim!1).S(dim!1) b

S(A∼P,B∼P,C∼P,D∼P,E∼P,dim!1,stable∼U).S(F∼P,G∼P,H∼P,I∼P,J∼P,dim!1,stable∼U) ->
S(A∼P,B∼P,C∼P,D∼P,E∼P,dim!1,stable∼U).S(F∼P,G∼P,H∼P,I∼P,J∼P,dim!1,stable∼P) stb

S(dim!1,stable∼U).S(dim!1,stable∼U) -> S(dim,stable∼U) + S(dim,stable∼U) d

++ K1() kadd in region RgnL since 1.0 until 3.0
++ K2() kadd in region RgnR since 5.0 until 7.0

end

begin observables
S_10u S(A∼U,B∼U,C∼U,D∼U,E∼U,F∼U,G∼U,H∼U,I∼U,J∼U) color blue
S_5pNterm S(A∼P,B∼P,C∼P,D∼P,E∼P,F∼U,G∼U,H∼U,I∼U,J∼U) color gold
S_5pCterm S(A∼U,B∼U,C∼U,D∼U,E∼U,F∼P,G∼P,H∼P,I∼P,J∼P) color pink
S_10p S(A∼P,B∼P,C∼P,D∼P,E∼P,F∼P,G∼P,H∼P,I∼P,J∼P) color darkred
SS_dim_stable S(dim!+,stable∼P) color red # observing S-S dimer
K1 K1() color black
K2 K2() color dimgrey
P P() color green

end

begin simulation
time end 500
observer intervals 100

end

Listing 13: Tutorial input file 5 (doc/examples/tutorial/05-rule_based_2.spatkin).

17

4.6 Tutorial µmodel 6: Gradient formation
This example (Listing 14) shows how a gradient of phosphorylated substrate can be formed between
enzymes tethered to different “compartments” of the reactor.

begin parameters
W 200 # Arithmetic expressions and previously defined parameters
H W/3 # can be used to define parameters (evaluations are always
A 8 # performed in double floating-point precision).
m 3 p 100 q p

end

begin world
topology planar size W H

end

begin regions
reservoirK rectangle W*(1)/(2*A) H/2 W/A H # in-place arithmetics
reservoirP rectangle W*(2*A-1)/(2*A) H/2 W/A H #

end

begin molecule types K() S(s) P() (* kinase, substrate, phosphatase *) end

begin seed species
S(s∼P) occupancy 1/8 # not inserting: S(s∼U), S(s∼PP)
K() occupancy 1/32 in region reservoirK
P() occupancy 1/32 in region reservoirP

end

begin event rules
>> S() m # K(), P() are immobile
K() + S(s∼U) -> K() + S(s∼P) 2*p
K() + S(s∼P) -> K() + S(s∼PP) p
P() + S(s∼PP)-> P() + S(s∼P) 2*q
P() + S(s∼P) -> P() + S(s∼U) q

end

begin observables
K K() color darkmagenta
S_u S(s∼U) color yellow group S # Grouping observables may aid
S_p S(s∼P) color orange group S # trajectory visualization;
S_pp S(s∼PP) color red group S # group "all" is always created.
P P() color green

end

begin simulation
duration 10000
observer intervals 100

end

Listing 14: Tutorial input file 6 (doc/examples/tutorial/06-gradient_formation.spatkin).

18

4.7 Tutorial µmodel 7: Steady state controlled by diffusion
In this example (Listing 15), lattice is divided into two regions; molecules located in one of them have
significantly reduced diffusivity. By visual inspection of the trajectory it can be observed that diffusion
controls the steady state (i.e., the fraction of phosphorylated S molecules – black). This case has been
analyzed by Szymańska et al., 2015 [see Figure 2(b) in Phys. Rev. E 91, 022702].

begin parameters
a 120 # -- geometric parameter
rhoK 0.1 # \
rhoP rhoK/10 # -> parameters used to set up initial conditions
rhoS 0.25 # /

end

begin world
topology plane size 2*a a # width==2*height

end

begin regions
Left rectangle a/2 a/2 a a diffusivity 0.01

end

begin molecule types
K() P() S(s) # kinase, phosphatase, and their substrate

end

begin seed species
K() occupancy rhoK
P() occupancy rhoP
S(s∼U) occupancy rhoS

end

begin event rules
>> K() m >> P() m >> S() 100
K() + S(s∼U) -> K() + S(s∼P) 1
P() + S(s∼P) -> P() + S(s∼U) 100

end

begin observables
K K() color yellow
P P() color red
Su S(s∼U) color lightgrey
Sp S(s∼P) color black

end

begin settings
time end 20
observer intervals 200

end

Listing 15: Tutorial input file 7 (doc/examples/tutorial/07-diffusion_controlled_steady_state.spatkin).

19

http://dx.doi.org/10.1103/PhysRevE.91.022702

4.8 Tutorial µmodel 8: Ligand-induced receptor dimerization
This is an example (Listing 16) of excitable system where introduction of trivalent ligands that collo-
calize bivalent receptors facilitates their activatory autotransphosphorylation. This activity is further
enhanced by recruitment and activation of autotransphosphorylating kinases and opposed by phos-
phatases which bind to and act on both activated receptors and kinases. This example is inspired by
early events in B cell receptor signaling.

(*
* A note on reproducibility:
* This is a stochastic simulation of an excitable system, which means that
* the system occasionally can get activated spontaneously (due to a fluctuation).
* In such case, one can change random generator seed(s) and re-run the simulation.
*)

begin parameters
m 10.
occuR 0.03 # receptor occupancy
occuK 0.1 # kinase ocupancy
occuP 0.05 # phosphatase ocupancy

end

begin world
topology plane size 64 64
random seed 12345 # This seed influences initial locations of molecules.

end

begin regions
patch circle 32 32 10

end

begin molecule types
K(P,K,R,A) # kinase
P(R,K) # phosphatase
Ag[3] # extracellular antigen, trivalent
R(P,K,A)[2] # bivalent receptor with 2 additional sites for binding K, P

end

begin seed species
R(P,K,A∼U)[@,@] occupancy occuR # Molecules are inserted unbound.
P(R,K) occupancy occuP
K(P,K,R,A∼U) occupancy occuK

end

begin event rules

>> R() m >> P() m >> K() m

Immobile binders appear unbound in a lattice dual to the regular lattice.
"Antigen appearance":
++ Ag[@,@,@] 0.01 in region patch since 200 until 220

20

"Receptor-ligand binding", "Receptor-ligand unbinding":
+-! R() & Ag[] 10, 0.01

Receptors activation in trans:
R() + R(A∼U) -> R() + R(A∼P) 0.01
R() + R(A∼P) -> R() + R(A∼PP) 0.01
R(A∼P) + R(A∼U) -> R(A∼P) + R(A∼P) 0.02
R(A∼P) + R(A∼P) -> R(A∼P) + R(A∼PP) 0.02
R(A∼PP)+ R(A∼U) -> R(A∼PP) + R(A∼P) 0.05
R(A∼PP)+ R(A∼P) -> R(A∼PP) + R(A∼PP) 0.05

R(P,K,A∼PP) + K(P,K,R,A∼U) -> R(P,K!1,A∼PP).K(P,K,R!1,A∼U) 1
R(K!1,A∼PP).K(P,K,R!1,A∼U) -> R(K!1,A∼PP).K(P,K,R!1,A∼P) 10
R(K!1).K(R!1) -> R(K) + K(R) 1

K(P,K,R,A∼P) + K(P,K,R,A∼U) -> K(P,K!1,R,A∼P).K(P,K!1,R,A∼U) 1
K(P,K!1,R,A∼P).K(P,K!1,R,A∼U)-> K(P,K!1,R,A∼P).K(P,K!1,R,A∼P) 10
K(K!1).K(K!1) -> K(K) + K(K) 1

P(R,K) + R(P,K,A∼PP) -> P(R!1,K).R(P!1,K,A∼PP) 3
P(R,K) + R(P,K,A∼P) -> P(R!1,K).R(P!1,K,A∼P) 3
P(R!1,K).R(P!1,K,A∼PP) -> P(R!1,K).R(P!1,K,A∼P) 10
P(R!1,K).R(P!1,K,A∼P) -> P(R!1,K).R(P!1,K,A∼U) 10
P(R!1).R(P!1) -> P(R) + R(P) 1

P(R,K) + K(P,K,R,A∼P) -> P(R,K!1).K(P!1,K,R,A∼P) 1
P(R,K!1).K(P!1,K,R,A∼P) -> P(R,K!1).K(P!1,K,R,A∼U) 10
P(K!1).K(P!1) -> P(K) + K(P) 1

end

begin observables
Ag_tot Ag[@!?,@!?,@!?] color black
Receptor_U R(A∼U) color lightgrey
Receptor_P R(A∼P) color grey
Receptor_PP R(A∼PP) color brown
Kinase_inactive K(A∼U) color gold
Kinase_active K(A∼P) color red
Phosphatase P() color green

end

begin simulation
time end 500
observer intervals 1000
snapshots on # If you do not want snapshots, write: snapshots off
random seed 12345 # This seed influences the order of events.

end

Listing 16: Tutorial input file 8 (doc/examples/tutorial/08-receptors_and_ligands.spatkin).

21

4.9 Tutorial µmodel 9: Crowding-facilitated switch in a bistable system
In this example (Listing 17), kinetics of a bistable system is simulated. In a defined instant, chemically
inert molecules (“crowders”) are introduced which leads to reduction of reactants’ diffusivity. In this
system, the presence of crowders favors processive rather than distributive phosphorylation, and in this
way favors the steady state of a high amount of doubly phosphorylated kinases. Initially the system
is in the steady state of a low amount of phosphorylated kinases; upon recruitment of crowders to the
membrane, a transition to the other steady state is observed.

The effect of the presence of crowding molecules and their diffusivity on the effective diffusivity
of (other) molecules on the lattice has been analyzed by Szymańska et al., 2015 [see Figure 9 in
Phys. Rev. E 91, 022702].

(*
* A note on reproducibility:
* This is a stochastic simulation of a bistable system, which means that
* the system may occasionally switch to another state (though it is very
* implausible). In such case, one can change random number generator
* seed(s) and re-run the simulation.
*)

begin parameters
rhoK 0.4
rhoP 0.1
d 1 / (6 * rhoP)
c1 0.02 / (6 * rhoK)
c2 0.15 / (6 * rhoK)
c3 4 / (6 * rhoK)
m 300

end

begin world
topology planar
size 50 50
random seed 123

end

begin regions
end

begin molecule types
K(a) # kinase
P() # phosphatase
C() # crowder

end

begin seed species
P() occupancy rhoP
K(a∼U) occupancy rhoK

end

22

http://dx.doi.org/10.1103/PhysRevE.91.022702

begin event rules

Rules for reactants:
#
>> K() m >> P() m

K(a∼U) + K(a∼U) -> K(a∼U) + K(a∼P) 2*c1
K(a∼U) + K(a∼P) -> K(a∼U) + K(a∼PP) c1

K(a∼P) + K(a∼U) -> K(a∼P) + K(a∼P) 2*c2
K(a∼P) + K(a∼P) -> K(a∼P) + K(a∼PP) c2

K(a∼PP) + K(a∼U) -> K(a∼PP) + K(a∼P) 2*c3
K(a∼PP) + K(a∼P) -> K(a∼PP) + K(a∼PP) c3

P() + K(a∼P) -> P() + K(a∼U) d
P() + K(a∼PP) -> P() + K(a∼P) 2*d

Rules for crowders:
#
++ C() 0.15 since 36 until 40
>> C() m/10

end

begin observables
K K(a∼U) color yellow
K_p K(a∼P) color orange
K_pp K(a∼PP) color red
P P() color lime
C C() color dimgray # crowder

end

begin simulation
duration 100
observer intervals 1000
random seed 123
snapshots on

end

Listing 17: Tutorial input file 9 (doc/examples/tutorial/09-crowding_facilitated_switch.spatkin).

23

4.10 Tutorial µmodel 10: Traveling wave
The considered system contains phosphatases and auto-phosphorylating kinases reacting in a long
cylindrical domain. This prototypical bistable system is the subject of the analysis described by Zuk
et al., 2012 [Phys. Biol. 5, 055002] and Kochańczyk et al., 2013 [J. R. Soc. Interface 10, 20130151],
where the concordance of particle-based simulations in SpatKin and finite-element method-based
simulations of a corresponding partial differential equation system is demonstrated.

(*
* Please note that the simulation can take about two hours. Occasionally, the
* stochastic traveling wave may fail to propagate or spontaneous self-activation
* may occur in another part of the lattice -- in such case one can change random
* number generator seed(s) and re-run the simulation.
*)

begin parameters
n_stat_K 183 # |
n_stat_Kp 571 # > high-phospholevel steady state (calculated from ODEs)
n_stat_Kpp 439 # |
rhoK 0.4
rhoP 0.1
d 1 / (6 * rhoP)
c1 0.02 / (6 * rhoK)
c2 0.18 / (6 * rhoK)
c3 4 / (6 * rhoK)
m 1000

end

begin world
topology planar size 404 30
random seed 123456789

end

begin regions
Barrier rectangle 402 15 4 30 diffusivity 0 # reflective boundary
Ignition rectangle 50 15 100 30
Rest rectangle 250 15 300 30

end

begin molecule types
K(a) (* self-activating kinase *) P() (* phosphatase acting on the kinase *)

end

begin seed species
P() occupancy rhoP in region Ignition
K(a∼U) n_stat_K in region Ignition
K(a∼P) n_stat_Kp in region Ignition
K(a∼PP) n_stat_Kpp in region Ignition
P() occupancy rhoP in region Rest
K(a∼U) occupancy rhoK in region Rest

end

24

http://dx.doi.org/10.1088/1478-3975/9/5/055002
http://dx.doi.org/10.1098/rsif.2013.0151

begin event rules
K(a∼U) + K(a∼U) -> K(a∼U) + K(a∼P) 2*c1
K(a∼U) + K(a∼P) -> K(a∼U) + K(a∼PP) c1
K(a∼P) + K(a∼U) -> K(a∼P) + K(a∼P) 2*c2
K(a∼P) + K(a∼P) -> K(a∼P) + K(a∼PP) c2
K(a∼PP) + K(a∼U) -> K(a∼PP) + K(a∼P) 2*c3
K(a∼PP) + K(a∼P) -> K(a∼PP) + K(a∼PP) c3
P() + K(a∼P) -> P() + K(a∼U) d
P() + K(a∼PP) -> P() + K(a∼P) 2*d
>> K() m
>> P() m

end

begin observables
K K(a∼U) color yellow
K_p K(a∼P) color orange
K_pp K(a∼PP) color red
P P() color lime

end

begin simulation
description "Induced chemical travelling wave"
duration 100
observer intervals 200
random seed 987654321

end

Listing 18: Tutorial input file 10 (doc/examples/tutorial/10-traveling_wave.spatkin).

25

A Compilation and deployment

A.1 Dependencies
The following external libraries are required to build the targets:

• Spatkin: Qt{Core,Gui,OpenGL,Xml,Svg}, qwt;
• spatkin-kernel: boost_{system,filesystem};
• spatkin-mosaic: boost_{system,filesystem,program_options}, cairomm, sigc++, freetype, png12,

zlib.
Two of these software pieces are required to be provided in rather outdated versions:

• Boost version must be =1.55.0,
• Qwt version must be =6.1.2.

To alleviate this dependency issue, build scripts can retrieve, build, and internally deploy these libraries
in expected versions. Other libraries SpatKin depends upon are expected to be available through your
open source software package manager.

Satisfying dependencies on Linux. In order to install all required packages under Debian/Ubuntu
Linux, it should be sufficient to2:

$ sudo apt-get install cmake
$ sudo apt-get install libbz2-dev
$ sudo apt-get install libcairomm-1.0-dev libsigc++-2.0-dev

The GUI component would require additionally:

$ sudo apt-get install qtbase5-dev qtbase5-dev-tools qttools5-dev
$ sudo apt-get install libqt5svg5-dev libqt5opengl5-dev

Satisfying dependencies on the Mac. Under Mac OS X/macOS with MacPorts installed, one
can install required software with the command3:

$ sudo port -cuv install cmake qt5 cairomm

Satisfying dependencies on Windows. Using MSYS (and CMake’s target build system ‘MSYS
Makefiles’) one can compile a 32-bit version of SpatKin; using MSYS2/MinGW64 (and correspond-
ingly CMake target build system ‘MinGW Makefiles’) one can compile a 64-bit SpatKin (this alter-
native is recommended). Under MSYS2, all prerequisites can be installed easily as follows:

$ pacman -S mingw64/mingw-w64-x86_64-binutils \
mingw64/mingw-w64-x86_64-gcc \
mingw64/mingw-w64-x86_64-make \
mingw64/mingw-w64-x86_64-cmake \
mingw64/mingw-w64-x86_64-extra-cmake-modules \
mingw64/mingw-w64-x86_64-pkg-config

$ pacman -S mingw64/mingw-w64-x86_64-qt5 \
mingw64/mingw-w64-x86_64-cairomm \
mingw64/mingw-w64-x86_64-gtkmm

$ pacman -S make patch git unzip
2This was tested last time under Ubuntu Linux 16.
3This was tested last time under macOS 10.12 “Sierra”.

26

A.2 Building
The source code uses CMake which assists in its compilation on Linux, Mac, and Windows (with
MinGW64/MSYS2). To compile the code, one can directly run the script build_release.sh located and
intended to be launched in directory build, or follow the step-by-step instructions provided below.

In the first stage, non-standard third-party software should be retrieved and built. After changing
to the top-most source directory, in the command line type:
$ cd build
$ cmake ../contrib && make

If GUI is not intended to be built, one may disable building external components that are required by
GUI with cmake’s -DSPATKIN_CONTRIB_NO_GUI_COMPONENTS=True.

In the second stage, to perform a proper SpatKin build in the same directory, remove the generated
CMakeCache.txt file, and then type:
$ cmake .. -DCMAKE_BUILD_TYPE=Release

At this point, an environmental variable pointing to a specific C++ compiler can be set prior to CMake
invocation, and build generator and a custom install path prefix can be selected by passing appropriate
CMake parameters with the above invocation, e.g. on MinGW64/MSYS2:
$ CXX="g++-4.8.1.exe" cmake .. -G "MinGW Makefiles" -DCMAKE_INSTALL_PREFIX=$HOME/local

If you want to configure and build only selected components, they should be listed explicitly using
CMake variable BUILD_SPATKIN_COMPONENTS (e.g., -DBUILD_SPATKIN_COMPONENTS=kernel or
-DBUILD_SPATKIN_COMPONENTS="kernel;mosaic").

After configuring with CMake, depending on the previous choice of components, several build tar-
gets should become available for the proper build tool:

• all – that is default, will build all the main targets:
– spatkin-kernel,
– spatkin-mosaic,
– spatkin-gui,
– Spatkin (alias to spatkin-gui),

• install – installs to a default location (unless specified explicitly, as described above).
To have a regular build, run:
$ make

(or mingw32-make.exe under MinGW64/MSYS2). As the implementation of the parser makes heavy
use of generative programming, please expect long compile times of grammar-defining source files.

If the build process is successful, you may want to issue
$ make install

(mingw32-make.exe install under MinGW64/MSYS2) and then make the built third-party libraries
(stored in build/contrib) accessible by editing paths in the LD_LIBRARY_PATH (on Linux) or DYLD_LIBRARY_PATH
(on the Mac) environmental variable, or just by copying the libraries to the directory, in which installed
binary executables are located (Windows).

A list of tested compilers and additional hints on compilation can be found in file COMPILING.txt
included in the source code distribution.

A.3 Deployment
On Windows, built software components and required libraries can be easily packaged into an installer
with Nullsoft Scriptable Install System (NSIS; a suitable script is provided in source code distribution
in packaging/windows). Detailed instructions on how to build and deploy a Mac executable bundle (an
“.app”) are contained in file INSTALL.txt.

27

B Syntax
Typographically, bold face is used for sections, sans-serif font for keywords and italics for user-defined
contents. All user-defined variables are indicated in grammars by their type and some are also endowed
with a short mnemonic (in normal serif font), forming a colon-joined pair. Variables are of one of the
following four types:

• id – identifier,
• string – sequence of any characters (delimited by quotation marks),
• integer – unsigned integer (natural number),
• real – real number, always used in double precision.

All keywords are case-insensitive. Syntactically, a variant of Backus–Naur form is used to describe the
structure of SpatKin programs—see Table 4.

Notation Meaning
[a] optional
[a]+ optional, one or more
{a} set
a b sequence
(a | b) alternative
a := b assignment
a = v default value of a

Table 4: Backus–Naur form used to describe SpatKin grammars (in order of decreasing precedence). Sequences
and alternatives accept 2 or more arguments; sets can be empty.

B.1 Identifiers
Identifiers are ubiquitous in SpatKin programs. Any sequence of characters starting with a letter
and consisting of numbers and letters is a valid identifier. Identifiers are treated in the case-sensitive
manner. They have different yet intuitive scopes to denote parameters, molecules’ names, molecular
sites’ names and aliases of observables.

B.2 Comments
Both single-line and multi-line comments are handled. Comments may occur anywhere besides quo-
tations. Several customary code commenting styles are handled.

This is a single line comment (BioNetGen-/shell-script-like).
% This is another single line comment (a'la Matlab/TeX).
// This is also a single line comment (as in C++).

/*
* This is a multiline C-style comment.
*/

(* This ML- or Mathematica-like comment
also spans more than one line. *)

Listing 19: Single- and multiline comment styles.

28

B.3 Grammars

� �
program := parameters_section

world_section
regions_section
molecule_types_section
seed_species_section
observables_section
simulation_settings_section� �

Listing 20: General program grammar. All sections are required to appear, even if empty.

� �
parameters_section :=

begin parameters
{ id eval_expression }

end [parameters]

eval_expression := eval_term
{ (‘+’ eval_term
| ‘−’ eval_term) }

eval_term := eval_factor
{ (‘∗’ eval_factor
| ‘/’ eval_factor) }

eval_factor := (real
| id
| ‘(’eval_expression ‘)’
| ‘−’ eval_factor
| ‘+’ eval_factor)� �

Listing 21: Parameters section grammar.

� �
world_section :=

begin world
topology plane size width:integer height:integer
[random seed integer]

end [world]� �
Listing 22: World section grammar.

29

� �
regions_section :=

begin regions
[region_definition]

end [regions]

region_definition := (rectangle xcenter:integer ycenter:integer width:integer height:integer
| circle xcenter:integer ycenter:integer radius:real
| cells x:integer ‘,’ y:integer [‘;’ x:integer ‘,’ y:integer]+
| grid cols:integer rows:integer [width:integer=1]
| region_expression
)
[diffusivity real]

region_expression := grammar follows that of eval_expression in Listing 21 with mandatory
brackets for two-argument operators; available operators are listed in Table 1� �

Listing 23: Regions section grammar.

� �
molecule_types_section :=

begin molecule types
{ (molecule_type | binder_type) }

end [molecule types]

molecule_type := id ‘(’[id {‘,’ id }]‘)’ [‘[’ valency:integer ‘]’] [weight real]
binder_type := id ‘[’ valency:integer ‘]’� �
Listing 24: Molecule types section grammar.

� �
seed_species_section :=

begin seed species
{ seed_species }

end [seed species]

seed_species := (concrete_molecule | concrete_binder)
((integer | parameter) | occupancy (real | parameter)) [in region id]

concrete_molecule := mol:id ‘(’[id [concrete_site_state] {‘,’ id [concrete_site_state] }]‘)’

concrete_site_state := (‘∼U’ | ‘∼P’ | ‘∼PP’) [‘!’bondnumber:integer]

concrete_binder := bndr:id ‘[’ ‘@’ [{‘,’ ‘@’ }]‘]’� �
Listing 25: Seed species section grammar. Molecular seed species should have all their constituent sites listed.

30

� �
event_rules_section :=

begin event rules
{ (movement_rule | reaction_rule | binder_rule
| emergence_rule | extinction_rule) }

end [event rules]

movement_rule := [‘"’ name:string ‘"’ ‘:’]
‘>>’ molecules_pattern rate

reaction_rule := (unidirectional_reaction_rule | bidirectional_reaction_rule)

unidirectional_reaction_rule := [‘"’ name:string ‘"’ ‘:’]
molecules_pattern ‘->’ molecules_pattern rate

bidirectional_reaction_rule := [‘"’ name:string ‘"’,‘"’ name:string ‘"’ ‘:’]
molecules_pattern ‘<->’ molecules_pattern rate,rate

binder_rule := (binder_binding | binder_unbinding | binder_binding_unbinding)

binder_binding := [‘"’ name:string ‘"’ ‘:’]
‘+!’ binder ‘+’ molecule_pattern rate

binder_unbinding := [‘"’ name:string ‘"’ ‘:’]
‘-!’ binder_pattern ‘.’ molecule_pattern rate

binder_binding_unbinding := [‘"’ name:string ‘"’,‘"’ name:string ‘"’ ‘:’]
‘+-!’ binder_pattern ‘&’ molecule_pattern rate,rate

emergence_rule := (molecule_emergence | binder_emergence)

extinction_rule := molecule_extinction

molecule_emergence := [‘"’ name:string ‘"’ ‘:’]
‘++’ concrete_molecules rate [in region id] [since time] [until time]

binder_emergence := [‘"’ name:string ‘"’ ‘:’]
‘++’ concrete_binder rate [in region id] [since time] [until time]

molecule_extinction := [‘"’ name:string ‘"’ ‘:’]
‘--’ concrete_molecules rate [in region id] [since time] [until time]

time := (real | parameter)
rate := (real | parameter)� �
Listing 26: Event rules section grammar. Grammar production molecules_pattern denotes a list of molecules
separated by ‘+’ or ‘.’ or ‘&’. A molecule_pattern is analogous to the concrete_molecule, defined in the
seed species grammar, with the exception that not all sites have to be listed and additionally the site states of
possible binding (!?) and any binding (!+) are allowed. Of note, intermolecular bonds are worked out based
on bond numbers rather than on those separators.

31

� �
observables_section :=

begin observables
{ name:id molecule_pattern

[color color_spec]
[group groupname:id {‘,’ groupname:id }] }

end [observables]

color_spec := (colorname:id | rgb red:real ‘,’ green:real ‘,’ blue:real)� �
Listing 27: Observables section grammar.

� �
simulation_settings_section :=

begin simulation
[description ‘"’ string ‘"’]
stop_condition
logging_frequency
[snapshots off]
[random seed integer]

end [simulation]

stop_condition := (time [end] real
| steps integer)

logging_frequency := (observer intervals integer
| observer interval time real
| observer every steps integer)� �

Listing 28: Simulation settings section grammar.

32

C Computational efficiency
Time τ simulated in a single time step is inversely proportional to the effective rate of the slowest
chemical process in the system, τ ∼ 1/keff ≃ (k + m)/(k × m), where m is the rate of hopping on
the lattice [Nałęcz-Jawecki et al., 2015, J. Chem. Phys. 143, 215102]. Real time required to reach
equilibrium, teq, is proportional to τ , m, lattice area S, and its occupancy ρ: teq ∼ τ ×m× S × ρ =

(k +m)/k × S × ρ. For diffusion-limited processes k ≪ m, and then teq ∼ m/k × S × ρ.
This dependence is valid for monostable systems. In bistable systems, simulations are usually

expected to last long enough to observe multiple transitions between steady states as this enables
characterization of their relative stability. In such systems expected time to transition is much harder
to etimate and depends on stability of steady states and lattice size [Kochańczyk et al., 2013, J. R. Soc.
Interface 10, 20130151]; bistable systems are thus not appropriate for benchmarking. Raw performance
of the simulator is characterized below in the benchmark of a simple system in which for simplicity
only diffusive events are considered.

Benchmark of diffusive events
This benchmark (see Listing 29 and Figure 2) demonstrates that for medium and large lattices the num-
ber of events simulated in a unit of time depends very weakly on the lattice size. Better performance
observed for small lattices can be likely attributed to hierarchical computer memory organization.

begin parameters m 1.0 rho 0.1 end
begin world topology plane size _SIDE_ _SIDE_ end
begin regions end
begin molecule types A() end
begin seed species A() density rho end
begin event rules >> A() m end
begin observables A A() end
begin settings time end 1000 observer intervals 1 end

Listing 29: A template for input files used for benchmarking diffusive events. Strings _SIDE_ are intended to
be replaced in an automated way.

0

1×105

2×105

3×105

4×105

5×105

6×105

5
0
×
5
0

6
0
×
6
0

7
2
×
7
2

8
4
×
8
4

1
0
0
×
1
0
0

1
2
0
×
1
2
0

1
5
0
×
1
5
0

1
8
0
×
1
8
0

2
2
0
×
2
2
0

2
7
0
×
2
7
0

3
3
0
×
3
3
0

4
0
0
×
4
0
0

4
9
0
×
4
9
0

6
0
0
×
6
0
0

7
3
0
×
7
3
0

9
0
0
×
9
0
0

1
1
0
0
×
1
1
0
0

1
3
3
0
×
1
3
3
0

1
6
0
0
×
1
6
0
0

2
0
0
0
×
2
0
0
0 0.01

0.1

1

10

�

ev
en
ts

p
er

1
s
o
f
C
P
U

ti
m
e
(•
,◦
)

R
es
id
en
t
m
em

o
ry

si
ze

[G
B
]
(�
)

Lattice area

• – Intel Core i7-4790K (4.4 GHz, 8 MB L3 Cache)

◦ – Intel Xeon E5-2640 (2.6 GHz, 20 MB L3 Cache)

Figure 2: Benchmark of diffusive events in simulations of lattices of different sizes with occupancy of 10%.
Single-core results for two different CPUs indicate that when passing from small- to medium-sized lattices,
performance aggravates slightly in the CPU cache size-dependent manner. (Files that can be used to run
analogous benchmarks can be found in directory benchmark in SpatKin source code distribution.)

33

http://dx.doi.org/10.1063/1.4936131
http://dx.doi.org/10.1098/rsif.2013.0151
http://dx.doi.org/10.1098/rsif.2013.0151

D Predefined colors
These colors can be assigned to observables by name.

crimson
deeppink
violetred
palevioletred
mediumvioletred
hotpink
fuchsia
magenta
darkmagenta
purple
orchid
darkviolet
violet
plum
mediumorchid
indigo
darkorchid
thistle
blueviolet
mediumpurple
blue
mediumblue
darkblue
navy
navyblue
lightslateblue
mediumslateblue
slateblue
darkslateblue
midnightblue
royalblue
dodgerblue
cornflowerblue
deepskyblue
steelblue
lightsteelblue
lightskyblue
lightslategrey
lightslategray
slategrey

slategray
darkturquoise
cyan
aqua
darkcyan
teal
skyblue
lightseagreen
lightblue
mediumturquoise
turquoise
cadetblue
powderblue
mediumspringgreen
darkslategrey
darkslategray
paleturquoise
springgreen
aquamarine
mediumaquamarine
mediumseagreen
seagreen
lime
green
darkgreen
limegreen
forestgreen
palegreen
lightgreen
darkseagreen
lawngreen
chartreuse
greenyellow
yellowgreen
olivedrab
darkolivegreen
yellow
olive
gold
darkgoldenrod

orange
goldenrod
darkkhaki
darkorange
khaki
lightgoldenrod
palegoldenrod
chocolate
saddlebrown
peru
orangered
sandybrown
burlywood
tan
sienna
coral
red
lightsalmon
tomato
darkred
maroon
darksalmon
firebrick
salmon
brown
indianred
lightcoral
rosybrown
gainsboro
lightgrey
lightgray
silver
darkgray
darkgrey
gray
grey
dimgrey
dimgray
black

Color grid 1: Darker colors.

34

lightpink
pink
lavenderblush
lavender
ghostwhite
aliceblue
lightcyan
azure
mintcream
honeydew
lightgoldenrodyellow

lightyellow
beige
ivory
lemonchiffon
cornsilk
wheat
moccasin
navajowhite
papayawhip
blanchedalmond
oldlace

floralwhite
bisque
antiquewhite
peachpuff
linen
seashell
mistyrose
snow
white
whitesmoke

Color grid 2: Brighter colors.

35

	Introduction
	General description
	Computational approach
	Package overview
	Published applications
	Validation

	Input file
	Input file sections
	Parameters section
	World section
	Regions section
	Molecule types section
	Seed species section
	Event rules section
	Observables section
	Simulation settings section

	Hints on the workflow
	Model development
	Selected features of GUI
	Continuing a simulation
	Backing up results
	Trajectory visualization

	Tutorial models
	Tutorial µmodel 1: Heterogeneous initial location of molecules
	Tutorial µmodel 2: Diffusion-limited aggregation
	Tutorial µmodel 3: State-dependent removal from the membrane
	Tutorial µmodel 4: Rule-based capabilities (1)
	Tutorial µmodel 5: Rule-based capabilities (2)
	Tutorial µmodel 6: Gradient formation
	Tutorial µmodel 7: Steady state controlled by diffusion
	Tutorial µmodel 8: Ligand-induced receptor dimerization
	Tutorial µmodel 9: Crowding-facilitated switch in a bistable system
	Tutorial µmodel 10: Traveling wave

	Compilation and deployment
	Dependencies
	Building
	Deployment

	Syntax
	Identifiers
	Comments
	Grammars

	Computational efficiency
	Predefined colors

