
ShuttleTracker – User’s manual
@version 1.5.3

Overview 2
Overview: Capabilities . 2

Launching 2
Launching with GUI . 2
Launching from terminal . 2

Input images 3
Input images: File names . 3
Input images: Image formats . 4
Input images: Bit depth . 4
Input images: Metadata . 4

Viewing 5
Navigation . 5
Enhanced view . 6

Toolboxen 6
Toolbox: Image masking . 6
Toolbox: Nuclei detection . 7
Toolbox: Nuclei editing . 10
Toolbox: Perinuclei derivation . 11
Toolbox: Regions editing . 12
Toolbox: Quantification . 12
Toolbox: Tracking . 13
Toolbox: Tracks editing . 15

Scripting 16

Preferences 16

Further analysis 18

Getting help 18

Credits 18

Appendix A: Programming interface 19

Appendix B: Quantified features 25

Appendix C: Hints and troubleshooting 27
Batch file renaming . 27
Bit depth conversion . 28
Interoperability with ImageJ . 28
High-resolution displays . 29
Multi-threaded image processing . 29

Appendix D: Version history 31

February 2, 2023

Overview

Overview: Capabilities
ShuttleTracker can detect stained cell nuclei, generate corresponding annular perinuclear ex-

tensions, quantify properties of detected objects, and perform frame-to-frame nuclei tracking.

Parameters of the image processing algorithms can be changed manually and the effects of

these changes are shown immediately overlaid on currently displayed microscopic images. A

key capability of ShuttleTracker is that nuclear contours and tracks can be generated automati-

cally and then corrected manually in a WYSIWYG (“what you see is what you get”) manner. The

tool is scriptable.

Detailed analysis of quantified geometric and photometric properties of tracked nuclei and

other objects is out of the scope of the program. Quantifications are exported to plain-text

files that can be easily analyzed using external tools. A package of Python scripts and exam-

ple interactive Python notebooks are distributed together with ShuttleTracker to demonstrate

a standard approach to the analysis of features quantified in and exported from ShuttleTracker.

Software homepage: http://pmbm.ippt.pan.pl/software/shuttletracker (permalink), in

addition to this manual, contains C++ source code with compilation instructions, precompiled

binaries, introductory tutorial, and example inputs.

Launching

Launching with GUI
Initially, ShuttleTracker displays an “empty” window. A directory with images to be analyzed

can be selected after clicking menu File→Open directory... (or by pressing Ctrl+Shift+O). Image

files in the selected directory are expected to be properly named, see a further subsection on

naming guidelines.

Launching from terminal
When ShuttleTracker is executed from the command line, as the first (positional) argument one

may give it a path to a directorywith images; ShuttleTracker will then openGUI and immediately

load images. If one would like to execute a ShuttleTracker script immediately after loading im-

ages, path to a ShuttleTracker script file (*.stscript) should be given after the -s or --script switch.

After successful script execution, ShuttleTracker will quit if -q or --quit-after-script-finished has

2

http://pmbm.ippt.pan.pl/software/shuttletracker

been given in the command line (or if the script itself contains quit();).

This software has been createdwith the intent to enable a user to have a good interactive control

over the behavior of image processing algorithms, but it is also possible to run ShuttleTracker

without displaying GUI (in a so-called headless mode) through a virtual frame buffer such as

Xvfb to enable batch processing (e.g., on a cluster). To perform image analysis in the headless

mode, one has to provide a ShuttleTracker script and invoke the program from the command

line as:

xvfb-run ShuttleTracker -q -s PATH_TO_SCRIPT PATH_TO_DIRECTORY

(if Xvfb fails to start, just after xvfb-run youmaywant to add these arguments: --auto-servernum

--server-num=1).

Input images

Input images: File names
The following regular expressions are used to fish for images in the selected directory:

• For single time-frame images:

^(.+)(?:_?[Cc][Hh]?([0-9]+))\\.(JPE?G|jpe?g|TIFF?|tiff?|PNG|png)$

• For multiple time-frame images (i.e., a time-lapse series), the time-point chunk

is: ”_?[TtZz]([0-9]+)” (or sk([0-9]+) to accommodate Operetta’s Harmony conven-

tion), the channel chunk is: ”_?[Cc][Hh]?([0-9]+)”, and the filename extension chunk

is: ”\\.(JPE?G|jpe?g|TIFF?|tiff?|PNG|png)”.

The time-point chunk and the channel chunk do not have to be zero-padded and may appear

in any order, and they can be optionally preceded by some common prefix. Time-point index-

ing should be zero-based. If, in the case of multiple time-frames, consecutive time points are

named using t# (T#), file names should not contain z# (Z#; and vice versa). At least one channel

should contain fluorescence microscopy images (as assessed based on pseudo-colors given in

metadata).

Prior to version 1.4, file naming was much more restrictive. Currently, because of still scarce

test coverage, if possible, it is still recommended to name the files according to the pre-v1.4

stringent convention, that is, in a manner similar to:

MyExperiment_t000_ch0.tif

MyExperiment_t000_ch1.tif

3

https://en.wikipedia.org/wiki/Regular_expression

MyExperiment_t000_ch2.tif

MyExperiment_t001_ch0.tif

MyExperiment_t001_ch1.tif

MyExperiment_t001_ch2.tif

(and so on).

In the pre-v1.4 convention, common prefix is mandatory, time-point indices are padded with

zeroes (in the example it is assumed that more than one hundred but not more than one thou-

sand time points is available); both the index of a time-frame and the channel number are

zero-based and both indexes should be used without gaps; filenames of bright-field images, if

present, should bear the last (the highest) channel index. So, overall, the pre-v1.4 convention

is just a special case of the current more flexible naming convention. If names of your files do

not conform to this pattern, and if you are not in an especially adventurous mood today, it is

currently recommended to rename your files (Appendix B contains a section with hints on how

to rename files in bulk).

Input images: Image formats
ShuttleTracker can read only single-channel (gray-scale) images in the following graphic formats:

TIF (*.tif, *.tiff), PNG (*.png), and JPEG (*.jpg, *.jpeg; use of JPEGs in microscopic image analysis

is strongly discouraged because they are oftentimes compressed using a lossy algorithm that

distorts originally recorded pixel intensities).

Input images: Bit depth
Bit depth of images (maximum-intensity gray-scale value) depends, among others, on the scan-

ner or camera used to record the images. ShuttleTracker learns about bit depth from the meta-

data associated with a given image set (see a subsection on metadata below). If images have

more than 8-bit gray-scale resolution, their bit depth is scaled linearly to 8-bit depth. All image

processing and analyses (most importantly, quantifications) are performed using 8-bit images.

This setting may crucially affect image preprocessing pipeline.

Input images: Metadata
Metadata are used to:

• establish the mapping between channel number and pseudocolor/LUT,

• declare the bit depth (i.e., gray-scale resolution) of the scanner or camera used to acquire

the images,

4

• get the number of time frames and their relative times (in seconds).

Metadata can be read from the MetaData directory that is exported by Leica LAS software. In-

formation expected to be found in metadata can be also provided manually – by creating a file

shuttletracker_metadata.txt in the directory that contains images. In an example meta-file of

the following contents:

channel 0 Protein1_GFP green 8

channel 1 Protein2_mCherry red 8

channel 2 H2B blue 8

time_interval 120.3

first three lines define the mapping from channel number to channel LUT (pseudocolor), pro-

vide informative mini-descriptions of image contents, specify bit depth of images; optionally,

an additional last column may contain intensity values to be subtracted from image before bit

depth conversion is performed (this is absent in the example above). Time interval is expected

to be given in seconds. Pseudocolor assignments are used only to display images in specific

colors in GUI and may be relevant for generating legible channel overlays (still, within Shuttle-

Tracker all images can be viewed in gray-scale). In the last line, time interval between frames

is provided (in seconds). This is a free-format text file: the exact number of white-spaces does

not matter; lines can appear in any order.

Viewing

Navigation
After images are loaded, each channel is displayed in a separate pane. Channels are referred

to using their assigned pseudocolors. There are seven predefined available pseudocolors: blue,

green, red, cyan, magenta, yellow, and bright-field; the software can handle up to seven chan-

nels. Default nuclear channel is blue; if absent, then green is the default nuclear channel. Shut-

tleTracker can compose and display overlays of selected channels.

One may zoom into/out of a region of an image using mouse scroll and move around when the

leftmouse button is pressed. Fields of view in all channel panes are synchronized to assure that

the corresponding image region is displayed in all panes.

Using menu View one can hide each pane or black out contained image. Blacking-out is useful

when one would like to show only image annotations (called markings). When multiple mark-

ings occlude microscopic image in the background, one may also, conversely, hide all markings

5

to display only themicroscopic image (hist: it’smore convenient to use the spacebar key instead

of selecting hide/unhide in the menu).

Enhanced view
Microscopic images can be displayed (i) as originally provided, (ii) with pixel intensities normal-

ized, or weakly (iii), (iv) moderately, or (v) strongly auto-leveled. Weak, moderate, strong auto-

leveling discards 2%, 4%, 8% of brightest pixels, respectively, and performs normalization of the

remaining pixels. Enhancements (i)–(iv) are available in the saturated (pseudocolor) as well as

desaturated (gray-scale) mode. The enhancements affect only how the images are displayed

(they do not impact image segmentation nor quantification).

Auto-leveled mode helps to visually discern darker portions of the image (after some time you

may find yourself falling into the habit of pressing F1–F5 or F6–F10 just after loading input im-

ages). Desaturated images appear brighter on the monitor screen than their saturated counter-

parts and thus may be more convenient to work on. When you work with desaturated (gray-

scale) images, youmay want to use green nuclear contours (can be set within the Nuclei Editing

toolbox). Of note, switching from-to the normalized view enables assessment whether input

images have a reasonable dynamic range.

Toolboxen

All available toolboxen are available from the Toolbox Menu and, additionally, from a dockable

tool-bar that can be displayed when selected in a pop-up menu that appears after right-clicking

on the main menu bar (under Linux and Windows). You may find it handy to use keyboard

shortcuts Ctrl+1, Ctrl+2, and so on, to switch between the toolboxen, especially in the full-screen

mode (press F11 or useWindow menu to enter/exit).

Visibility or “selectability” of objects overlaid over microscopic image depends crucially on the

currently active toolbox.

Toolbox: Image masking
Selected areas of an analyzed image can be masked to get rid of the regions in the image that

should not be analyzed nor quantified (because, for example, they contain contaminations that

would skew analysis). Masked areas are excluded from segmentation (within Nuclei Detection

toolbox) and whole-image quantification (within Quantification toolbox).

6

If onewants tomask someportion of the image, one should activate the ImageMasking toolbox,

click with right mouse button over the microscopic image to enter the marking mode and while

pressing leftmouse buttonmark the area to bemasked. Several (non-overlapping) areas can be

marked in this way. To clear all markings, one can use button Reset in the toolbox. If all desired

markings are ready, one can click toolbox button Mask to create the mask. Masked areas are

persistently blackened out. Masking contours for a current image can be stored and restored

using suitable buttons at the bottom of the toolbox pane, labeledMask↔file. To createmasks

for a series of images, each image has to be treated separately.

Toolbox: Nuclei detection
Nuclei can be detected based on images with nuclei-specific staining (with the use of, e.g.,

Hoechst, H2B-GFP) or based on cytoplasmic ”counter-staining”. In the first case, binarized im-

age resulting from the preprocessing pipeline is locally thresholded to find nuclear contours.

In the second case, nuclear contours are found in a preprocessed greyscale image using edge

detection.

Image preprocessing

Before nuclear contours are detected, the input image has to be preprocessed. Image prepro-

cessing pipeline consists of the series of filters:

1. Normalization linearly stretches the range of intensities of all 8-bit image pixels so that

they fill the full available intensity range (0...255).

2. Denoising removes salt-and-pepper noise using non-local means denoising. Associated

parameter, strength, influences jointly several filter properties: size of the scanning win-

dow, range of a local scan, and the strength of filter application. This filter is CPU-intensive

for larger values of strength that imply more non-local scan.

3. Smoothing performs bilateral noise filtering. Neighborhood of each pixel is defined based

on the filter only parameter, radius, and the weights of the photometric and geometric

distances are set as linearly proportional to radius. This filter may be used as a faster

replacement, or as a complement, of the previous denoising step.

4. Closing [applicable only in the case of cytoplasmic staining] removes small dark spots and

sharpens contours of nuclei by performing morphological dilation followed by erosion of

the gray-scale image. A number of consecutive closing rounds can be performed; the sizes

of structuring elements for dilation and erosion are forced to be identical not to displace

nuclear boundaries.

All these stages (filters) in the pipeline can be individually turned on and off. If the preview

7

stages checkbox has been checked, previews of the effects of the filters will be displayed in

separate windows. The filters and their parameters are also described briefly in tooltips that

pop up when hovering the mouse cursor over filter names or their parameter labels.

Image preprocessing does not impact image quantification nor the way in which the image is

displayed.

Nuclear contour detection

Detection of stained nuclei is performed by searching for blobs in a thresholded and optionally

morphologically opened binarized image:

• Thresholding [applicable only in the case of nuclear staining] binarizes input image using

local adaptive thresholding: for each pixel, a mean intensity of pixels in its neighborhood

(of radius controlled by parameter block size) is set as the binarization threshold. The

threshold can be further adjusted using parameter base-line. Local adaptive threshold-

ing handles well images with uneven illumination. If a single, global intensity threshold is

desired, one should just increase block size to be twice the larger dimension of the image.

Optimal values of both the parameters can be found automatically via a naïve grid search

(radio button: Manual → Auto), with resultant nuclear contours solidity being the opti-

mization objective. For some parameter values the algorithm for nuclei detection and

splitting may have long completion times, hence it’s possible to impose a time-out for

testing a single set of parameters (that is carried out in a single thread).

• Opening [applicable only in the case of nuclear staining] regularizes silhouettes of nuclei

after thresholding and removes small “debris” by performing morphological erosion fol-

lowed by dilation. A number of consecutive opening rounds can be performed; the sizes

of structuring elements for erosion and dilation are advised to be equal to prevent having

nuclear contours that would be artificially round or overly tight/loose.

It’s also possible to “uniformize” nuclei, that is, make the bright nuclei dimmer so that they do

not skew computation of statistics of pixel intensities, based onwhich local thresholds are deter-

mined. Uniformization is advised to be used whenever nuclei have widely differing intensities

and brighter nuclei appear to cause shift/shrinkage of contours of adjacent darker nuclei.

In the case of cytoplasmic staining, edge detection is performed according to the Canny

method. Initial contours are proposed within usual Canny hysteretic thresholds (the lower

acceptance threshold and the ratio of the higher-to-lower threshold are defined by the user)

and then subjected to filtering controlled by a single metaparameter tolerance that gauges ac-

ceptance/rejection of contours with outstanding area, irregular shape, extraordinary intensity,

etc. Additional recovery mode may be turned on to attempt finding nuclear contours based on

8

non-closed contours (this is a relatively CPU-intensive and thus multi-threaded procedure).

Nuclei assessment and splitting

Median nuclear contour area serves as the reference contour area and two user-defined param-

eters, min area and max area, expressed as fractions of the reference median area, are used

to classify all contours as: (i) too small to be a nucleus, (ii) too large to be a single nucleus, or

(iii) having area close enough to the reference nucleus and thus being single-nucleus contours.

Too small contours are called debris. Contours that are too large can be split (declumped) de-

pending on their solidity defined as the surface area of the contour divided by the surface area

of its convex hull. If a too large contour has solidity higher that user-defined min solidity, it is

deemed non-splittable. However, when solidity of a too large contour is lower, then it will be

subjected to splitting based on convexity defects called indents (this approach appears in many

cases more robust than standard watershed-based segmentation and is especially well suited

to split contours of nuclei determined based on cytoplasmic staining). Indents that can be used

for splitting should be sufficiently large, which is decided based on the user-definedmin indent

parameter. A split can be attempted only when a contour has two or more indents. Splitting

works recursively as long as there are indents that can be used to obtain contours of nuclei

of areas close to the reference area. Contours that result from splitting but according to the

min area parameter are too small are called split orphans. Descriptions of parameters involved

in nuclei assessment are shown in tooltips that pop up when hovering the mouse pointer over

parameter labels.

Nuclear contours are drawn over microscopic images in colors associated with their origin in

the above-described segmentation algorithm: typically sized contours that do not result from

splitting (denoted N in the message bar and log window) are white, typically sized contours

resulting from splitting (SpN) – green, large non-splittable (nSp) – red, split orphans (relatively

rare, denoted SpO) – yellow, debris (D) – violet. Obtained contours are scored according to

the variance of their solidities: the lower is variability, the higher is the score. Scoring is used

currently for automated optimization of thresholding parameters at the image preprocessing

stage.

If the checkbox auto-click has been checked, then one can adjust image preprocessing and nu-

clei assessment parameters and nearly instantaneously observe their impact on nuclei detec-

tion (without clickingDetect button after each parameter adjustment). Two CPU-intensive oper-

ations are Smoothing in the image preprocessing pipeline and reconstruct in contour detection

(in case of cytoplasmic staining).

All parameters of image preprocessing, contour detection, and nuclei assessment may be as-

9

signed within a script or saved to/loaded from a text file nuclei_detection.ini using buttons la-

beled Settings↔ file.

Toolbox: Nuclei editing
It is possible to correct automatically detected nuclei one-by-one by deleting existing nuclear

contours and adding new ones manually:

• To remove a nucleus: select the unwanted nucleus left-clicking on it and then make a

right-click.

• To add a nucleus: after right-clicking in a free space, press left mouse button and use

mouse pointer to draw the contour of a new nucleus.

• To split a nucleus: select the nucleus to be split by left-lick; then press the left mouse

button and when keeping it pressed click with the right mouse button to start drawing a

demarcation line.

All nuclei are numbered sequentially starting from 1. Use checkbox numbers in box Annotations

to show/hide the numbers. After a nucleus of a given number is removed, all higher nuclei

numbers are decreased by one. After a new nuclear contour has been drawn, it is assigned the

smallest available number (equal to the current number of all nuclear contours). A contour can

be redrawn, that is, replaced without changing its number, only in the tracks editing toolbox.

Double-left-click on a contour can be used to manually toggle a binary state of a nucleus called

toggled. This state is saved in both the coordinates and the quantification files, and thus can

be used during later stages of analysis. One can toggle nuclei that lie on the image border

using a suitable button in the box Editing by location. Using other buttons in this box one

can remove such border touching contours as well as contours classified as debris or split or-

phans. One may externally provide a list of numbers of nuclei to be highlighted in Shuttle-

Tracker. A path to the file with nuclei numbers, listed one by line, is specified by the set-

ting path_to_file_with_nuclei_to_be_highlighted of application preferences (see section Pref-

erences).

Coordinates of nuclear contours can be save to/loaded from a text file using button labeled

Nuclei↔ file. The order of contours in the file corresponds to the numbering displayed on the

screen.

When all nuclei in a frameare removed (which takes place also uponnuclei contours file loading),

all perinuclei and all tracks are removed as well.

10

Toolbox: Perinuclei derivation
Finding cell boundary in fluorescence microscopy images can be very hard or even unfeasible.

Thus, instead, one can mark perinuclear annulus that serves as a proxy of the cytoplasmic re-

gion. Determining such proxy is much easier than finding cell boundaries and may be sufficient

to capture mean or median pixel intensities in the cytoplasm. ShuttleTracker derives perinu-

clear annuli (called just perinuclei) based on nuclear contours and two principal user-defined

parameters: inner offset that sets the distance from a nuclear contour to the inner boundary

of a corresponding perinucleus (in pixels), and ring width that tells how thick the perinucleus

should be (in pixels). Perinuclei that would overlap are eroded at the potential overlap site;

erosion strength is controlled by parameter overlap avoid. Perinuclei that do not overlap but

nevertheless are expected to be placed safely apart from their neighborsmay be locally abraded

with the strength controlled by parameter neighbor avoid. Parametermin area is used to weed

out perinuclei that are too small (and thus likely non-representative).

In many cell lines, boundary of the cell (visible in the cytoplasmic staining channel) may lie very

close to the boundary of the nucleus (visible and determined in the nuclear staining channel).

In such case, a perinuclear contour that would go around the boundary of the nucleus would er-

roneously include regions of the image in which there is no cytoplasm. Onemaymitigate this is-

sue by excluding background from perinuclei using background avoid option. It is assumed that

background is sampled in cytoplasmic staining channel using Regions Editing toolbox. Based on

currentlymarked regions, mean background intensity (μ) and standard deviation of background

intensity (σ) are computed. Parameter expansion is used to set the effective background thresh-

old as μ + expansion × σ. This threshold value discriminates background vs. non-background

(think: non-cell vs. cell, respectively) and is applied to obtain a background mask. Background

mask results from thresholding of the image in the specified cytoplasmic channel. Smoothing,

performed by dilation of the background mask with a kernel of specified radius (parameter

smoothing), eliminates potential “spottyness” of the mask.

Please note that a single perinucleus can comprise several disjoint contours.

One cannot edit perinuclei; when having a given set of nuclear contours along with specific

derivation settings, one may faithfully derive a set of corresponding perinuclei. Perinuclei

“derivation” parameters can be assigned within a script or saved to/loaded from a file

perinuclei_derivation.ini using buttons labeled Settings↔ file.

11

Toolbox: Regions editing
Within Regions Editing toolbox, arbitrary regions may be marked on the images. They may be

used, e.g., to manually mark cell boundaries or background regions (to correct for background

intensity or characterize noise in further analysis).

To enter marking mode, press right mouse button. Then, using left mouse button, mark the

region (you don’t have to drawa closed loop – the contourwill be closed automatically). Regions

are annotated with ordinal numbers prefixed with R (use checkbox numbers in box Annotations

to show/hide the annotations).

The toolbox can suggest regions of the image in which there are likely no objects of potential

interest (intensity is low), which can be useful for finding background regions. First, images in

all channels that are included in overlays are decomposed into rectangular tiles. Then, for each

channel, tiles are rank-ordered based on their average intensity. Finally, each tile is scored based

on the product of its ranks in all channels. Adjacent background tiles may be merged.

To obtain a very rough segmentation of the image into regions adjacent to the nuclei, one can

automatically tesselate the image into Voronoi “cells”. Geometric centers of the nuclei serve as

dual Delaunay triangulation points. All Voronoi “cells” may be scaled homothetically and then

eroded (strong erosion should be used with care as it may wipe out small Voronoi “cells”, and

as a result the number of obtained regions will not match the number of nuclei, which may not

be the desired outcome).

Region contours can be saved to/loaded from a file using buttons labeled Regions↔ file.

Toolbox: Quantification
Areas enclosed in nuclear contours, perinuclear contours, and region contours can be quanti-

fied w.r. to surface area and fluorescence intensity sum, 1st quartile, median, 3rd quartile, mean,

standard deviation, min, and max, and other features, in each channel separately. The same

values can be calculated for the whole image. Nuclei are additionally characterized by their ec-

centricity and “toggled” status (described in the section on Nuclei Editing toolbox). A complete

list of quantified features is provided in Appendix B.

Channels of interest, in which the contours are to be quantified, can be individually selected and

named in the box Channel descriptions. The names cannot contain whitespaces nor commas as

they are used as prefixes of data columns in exported files. Quantifications for the current time

frame in selected channels are exported to the following comma-separated value (CSV) files:

• file named *-nuc_quant.csv contains quantifications of all nuclei;

12

• file named *-per_quant.csv contains quantifications of all perinuclei, ordered accordingly

to their corresponding nuclei;

• file named *-reg_quant.csv contains quantifications of all regions;

• file named *-reg_quant.csv contains quantifications of all halos, ordered accordingly to

their corresponding nuclei;

• file named *-img_quant.csv contains quantification of the whole image.

Quantification files should be easy to read-in and analyze in external tools. See section Further

analysis to learn about auxiliary analysis tools that are deployedwith ShuttleTracker. In addition

to CSV files, ShuttleTracker can export a PNG image with all contours marked. To add/remove

contour labels in the exported image, use checkboxes in Annotations boxes in the Nuclei Editing

and Regions Editing toolboxen.

Toolbox: Tracking
To perform tracking, nuclei from adjacent time frames are matched using a greedy algorithm

that takes into account predicted nuclei positions and their geometric and photometric charac-

teristics.

Prediction of nuclei positions

The next position of a nucleus is computed by extrapolating nucleus displacements observed

in several previous time frames. The number of previous displacements used for extrapolation

is determined by parameter memory. Previous displacements are weighted according to the

conservation parameter. The weights are proportional to exp(−k/H × (1 − c) × λ), where k is the

zero-based index of the displacement (counting starts from the track end),M is thememory, c

is the conservation, and λ is an arbitrary scaling constant (hardcoded as equal 5). If contribution

parameter is 1, the extrapolated position is taken as the final predicted nucleus position. If one

would like to use a linear combination of the last position and the extrapolated position, one

can set the contribution parameter between 0 and 1. Parameter contribution equal 0 means

that extrapolation is not performed and simply the last position is used (the same effect can be

obtained by just unchecking the Position prediction checkbox).

Nuclei matching algorithm

Nuclei matching is performed in three phases:

1. Nuclei similarity scoring. Similarity in all nuclei pairs, in which one nucleus comes from

to the previous time frame and the other nucleus belongs to the current time frame, is

estimated. Nuclei similarity score is computed based on the following features:

13

• proximity – calculated based on the distance of predicted nuclei positions,

• surface area,

• eccentricity – calculated based on how different is the nucleus shape from circle,

• orientation – calculated using the angle of the first principal axis

• sum of pixel intensities – in the nuclear staining channel,

• inertia of pixel intensities – in the nuclear staining channel (quantifies how periph-

eral vs. central is the distribution of pixel intensities in a quantified contour),

• distribution of pixel intensities – the Kolmogorov–Smirnov distance between two

distributions of nuclear intensities is computed.

Importantly, each feature forms an independent order statistics. Similarity scores, com-

puted as weighted linear combinations of order statistics (plural), form a matrix, where

the number of rows and the number of columns are equal to the number of nuclei in the

previous and the current time frame, respectively. Relative weights of the order statistics

(plural) are defined by the user.

2. Internuclear distance-dependent similarity scaling. Each estimated similarity score is

scaled depending on the predicted internuclear distance. Parameter similarity scaling is

the exponent for center-of-the-mass (COM)-dependent scaling of inter-nuclear distances

in the feature space (dissimilarities): scaled dissimilarity is proportional to dissimilarity ×

(predicted distance)^(similarity scaling).

3. Extension of tracks based onmax similarity. A predicted distances-scaled similarity score

of maximum value is sought in the scaled similarity matrix. When found, two correspond-

ing nuclei are considered as matched. The procedure of finding maximum similarity is

repeated for the still unmatched nuclei until the predicted distance of nuclei in a poten-

tial match is larger than the allowed inter-nuclear spacing, set as parameter Δxy cutoff

expressed in median inter-nuclear distances.

One can require that a track is not extended if an extension would result in a significant relative

reduction of the area of the nucleus.

Currently, tracking must be gapless, that is, the outline of the nucleus has to be marked in every

consecutive track frame. Joining tracks interrupted by gaps is delegated to the post-processing

stage.

In some frames, nuclear status can be set to “toggled” so that it is possible to exclude, e.g.,

incomplete nuclei in further analysis (resulting in, for example, discontinuity in a track). The

“toggled” status of nuclei does not influence nuclei matching.

14

Tracking settings can be saved to/loaded from file tracking.ini using buttons labeled Settings↔

file.

Toolbox: Tracks editing
Tracking results are displayed with segments – straight lines that connect centers of the mass of

matching nuclei. If no matching nuclei were found for a given nucleus in the previous and in the

next time frame, a stub is created and shown in the center of the mass of the derelict nucleus.

Tracks are listed in a tabular form, sorted by their lengths; tracks of the same length are ordered

by a descending confidence score. Each track can be selected by clicking on any of its segments

drawn over the image or by selecting an entry on the tabular tracks view. After visual inspection,

tracks can be annotated as revised using checkboxes in the last column of the tabular tracks view.

It is possible to remove a track by right-clicking on the corresponding row of the tabular tracks

view. It is also possible to correct erroneous tracks manually: segments can be added and re-

moved with mouse:

• To add a segment, select one segment or (a stub) with mouse left-click, press Ctrl key

(Command key on the macOS), and select another segment (or a stub) with the left-click.

As tracks are assumed to be continuous, only the tracks that end/begin at consecutive

time frames can be joined.

• To remove a segment, select it with the mouse left-click and then right-click on the se-

lection. If segment removal splits a track, two resulting tracks will be listed as two last

entries in the tabular tracks view.

Nuclei can be also edited as follows:

• To add a new nucleus (when having tracks), switch to the Nuclei Editing toolbox, draw a

new contour, then switch back to the Tracks Editing toolbox and click with mouse middle

button on the new contour to create a new stub. Stubs can be merged into segments, as

described previously.

• To correct a nucleus within a track, first: select it with the mouse left-click, second:

while pressing right mouse button make the left-click, third: draw the new contour

(by pressing left mouse button), or left-click in any empty space to abandon the

correction/replacement mode.

Having tracks, one cannot remove any existing nuclei; however, the nucleus “toggled” status

can be toggled and used during further data analysis to exclude parts of a track.

Tracks are saved to files in a simple textual format. First column is the frame number (zero-

15

based); the second column is the ordinal number of the nucleus (nuclei numbers do not have

to be consistent along the track). Nuclei numbering is consistent with the nuclei numbering

in the nuclei contours file and in the nuclei quantification file exported for a given time frame.

Nuclei numbers start from 1.

Please note that when all nuclei in a frame are removed (which takes place, e.g., upon nuclei

contours file loading), tracks are removed as well.

Scripting

ShuttleTracker ships an embedded ECMAScript (JavaScript) interpreter to enable automation.

The interpreter has been expanded with several syntactic extensions (e.g., to facilitate looping

over all time frames). Scripts are edited and executed in Script Editor (menu Script → Edit...).

Actions and parameters that can be called and set programmatically are listed in a side panel of

the Script Editor; the panel appears after clicking on Show API; additionally, Appendix A of this

manual contains a documentation of the programming interface with actions and parameters

grouped by toolbox. Several parameters have long (yet descriptive) names, so the editor has

been equipped with auto-completion. Simple debugging capabilities are provided: error mes-

sages and problematic script line numbers are displayed upon script failure at the bottom of the

editor.

The scripts are an integral part of the software tool: several key functionalities of ShuttleTracker

are provided through scripts (for example, a script is used to play the sequence of images as a

movie) and operations to be performed in the headless mode have to be expressed in scripts.

The scripts can be launched directly from the Scriptsmenu (also via keyboard shortcuts; short-

cuts are assigned after listing script file names in the lexicographic order). Newly added scripts,

saved as *.stscript files, become immediately available in the menu.

On Linux, script files are installed in INSTALL_PREFIX/share/shuttletracker/scripts. OnWindows,

scripts are stored as plain text files in user’s Document/STScripts directory. On macOS, scripts

are stored in ShuttleTracker.app/Contents/Resources/shuttletracker/scripts. On all systems, the

exact location can be checked at the bottom of the menu Help→ About window (Ctrl+Shift+V).

Preferences

Several preferences can be set or unset in the Preferences menu:

16

• Over-8-bit images: normalize to camera bit depth if known. This preference affects the

way in which 16-bit images are loaded.

• Memory: Load and store original images. If enabled, all original images (after conversion

to 8 bit depth) may be stored in RAM for fast access or, if disabled, accessed from disk

on-demand, which is slower but saves RAM.

• Memory: Precompute and store overlay images. When original images are stored in RAM,

one can also store pre-computed image overlays.

• Memory: Cache images in fast display buffers. This preference affects the way in which

images are prepared for display just after they are loaded. Cached images occupy more

space in RAM but are displayed faster.

• Bright-field images: Skip when loading. This preference affects the way in which images

are loaded. If BF images are not to be used, skipping them will save some memory.

• Bright-field images: Hide even when available. Auto-hide BF panel even when BF images

were loaded.

• Bright-field images: Exclude from initial overlays. BF images overlaid on fluorescence

visually images attenuate (pseudo)colors, thus it may be preferred to not use BF images

for overlays. It may be actively overridden by manually selecting overlay components in

menu View.

• View: Retain channel panes and overlay composition. Use current view settings (channel

panes, channels included in overlays, and zoom) for the next loaded image series. This

settings is allowed to override the setting ’Bright-field images: Exclude from initial over-

lays’.

• Upon startup: check for updates. Connect to the server pmbm.ippt.pan.pl to learn about

the latest available ShuttleTracker release.

When exiting, ShuttleTracker stores these preferences and some other settings to re-

store them when launched again. Stored settings include: widths of contours, ranges

of parameters for performing nuclei detection parameters scan, nuclei detection scoring

criterion, window geometry, the location of the last opened directory, exported quantifi-

cations, etc. On Linux, preferences and settings are saved to an INI-file (which is placed in

INSTALL_PREFIX/shared/shuttletracker/config). On macOS, settings.ini is located in Shuttle-

Tracker.app/Contents/Resources/shuttletracker/config. Under Windows, preferences are

saved to the system registry (don’t worry: upon deinstallation, the registry is purged of all

entries created by ShuttleTracker).

17

Further analysis

Quantifications and tracks generated with ShuttleTracker as saved to plain-text files in the

CSV format next to the image files. The output files contain comma-separated columns of

numeric values and should be thus easily parseable by external data analysis tools and scripts.

A Python module, shuttletracker, shipped in INSTALL_PREFIX/share/shuttletracker/analysis,

can be used to join tracks and respective quantifications in order to, e.g., characterize temporal

changes in subcellular location of fluorescently labeled proteins or infer cell division events. A

demonstration how one can use the Python module within a Jupyter notebook is provided in

INSTALL_PREFIX/share/shuttletracker/docs.

Getting help

If you have questions, bug reports, or feature requests, please feel free to send them to

shuttletracker.software@gmail.com .

Credits

Development of ShuttleTracker has been significantly influenced by suggestions and feature

requests of Maciej Dobrzynski (U Bern), Frederic Grabowski (U Warsaw) and Karolina Tudelska

(U Lancaster/UWarsaw). The author is also grateful to Piotr Korczyk (IPPT PAN), Zbyszek Korwek

(IPPT PAN), Tomek Lipniacki (IPPT PAN), Joasia Markiewicz (IPPT PAN), Paweł Nałęcz-Jawecki

(IPPT PAN), and Wiktor Prus (IPPT PAN) for testing and feedback, and to Nont Kosaisawe (UC

Davis) for discussions.

The author is also indebted to the creators of and contributors to the OpenCV libraries and Qt

framework, which helped to equip ShuttleTracker with essential image processing capabilities

and interactive user interface.

18

Appendix A: Programming interface

Actions that can be triggered by clicking buttons and parameters that can be set using spinboxes

or textfields can all be triggered or set programmatically. Denotational convention used below

is as follows:

– numeric argument or return value;

$ – string argument or return value;

% – boolean argument or return value;

@ – predefined argument;

* – wildcard for # or $ or @.

General actions

open_directory($); – same as File → Open directory...;

set(@,*); – sets a value (2nd argument) of a predefined parameter (1st argument);

$ get(@); – returns a value of a predefined parameter;

echo(*); – displays a passed value in status bar of the main window;

panic($); – stops script execution and displays a message;

quit(); – closes application;

frames_count();

current_frame();

go_to_frame(#);

repaint();

millisleep(#);

Masking toolbox

Actions:

apply_masking_contours();

save_masking_contours();

load_masking_contours();

% has_masking_contours_file();

19

Nuclei Detection toolbox

Actions:

detect_nuclei();

detect_nuclei_with_parameter_scan();

nuclei_count();

save_nuclei_detection_settings();

load_nuclei_detection_settings();

% has_nuclei_detection_settings_file();

Parameters:

nuclei_detection_channel

nuclei_detection_staining_nuclear

nuclei_detection_normalization

nuclei_detection_denoising

nuclei_detection_denoising_strength

nuclei_detection_smoothing

nuclei_detection_smoothing_radius

nuclei_detection_thresholding

nuclei_detection_thresholding_block_size

nuclei_detection_thresholding_baseline_offset

nuclei_detection_thresholding_auto

nuclei_detection_thresholding_baseline_offset_auto_from

nuclei_detection_thresholding_baseline_offset_auto_upto

nuclei_detection_thresholding_baseline_offset_auto_step

nuclei_detection_thresholding_block_size_auto_from

nuclei_detection_thresholding_block_size_auto_upto

nuclei_detection_thresholding_block_size_auto_steps

nuclei_detection_uniformization

nuclei_detection_uniformization_brightness_threshold

nuclei_detection_opening

nuclei_detection_opening_repeats

nuclei_detection_opening_erosion_base_size

nuclei_detection_opening_dilation_base_size

nuclei_detection_closing

nuclei_detection_closing_repeats

nuclei_detection_closing_dilation_base_size

20

nuclei_detection_closing_erosion_base_size

nuclei_detection_contour_detection_threshold_low

nuclei_detection_contour_detection_thresholds_ratio

nuclei_detection_contour_detection_tolerance

nuclei_detection_contour_detection_reconstruct

nuclei_detection_nuclei_assessment_min_solidity

nuclei_detection_nuclei_assessment_min_area_as_median_fraction

nuclei_detection_nuclei_assessment_max_area_as_median_fraction

nuclei_detection_nuclei_splitting_adjacent

nuclei_detection_nuclei_splitting_min_pocket_area

Nuclei Edit toolbox

Actions:

remove_nuclei();

remove_toggled_nuclei();

remove_debris();

remove_border_nuclei();

remove_interior_debris();

remove_split_orphans();

toggle_all_nuclei();

toggle_border_nuclei();

save_nuclei_contours();

load_nuclei_contours();

% has_nuclei_contours_file();

highlight_nuclei_from_file();

toggle_overlay_channel(@);

toggle_overlay_channel($);

Parameters: nuclei_editing_nuccut_channel_main nuclei_editing_nuccut_channel_aux1

nuclei_editing_nuccut_channel_aux2 nuclei_editing_nuccut_channel_main_weight nu-

clei_editing_nuccut_channel_aux1_weight nuclei_editing_nuccut_channel_aux2_weight

nuclei_editing_nuccut_color_conservativeness nuclei_editing_nuccut_edge_impassability

nuclei_editing_nuccut_exclude_toggled nuclei_editing_nuclei_labels nuclei_labels

21

Perinuclei Derivation toolbox

Actions:

derive_perinuclei();

remove_perinuclei();

save_perinuclei_settings();

load_perinuclei_settings();

% has_perinuclei_settings_file();

Parameters:

perinuclei_inner_offset

perinuclei_width

perinuclei_neighbor_avoidance

perinuclei_overlap_avoidance

perinuclei_min_part_area

perinuclei_background_avoidance

perinuclei_background_avoidance_channel

perinuclei_background_avoidance_expansion

perinuclei_background_avoidance_smoothing

Regions toolbox

Actions:

sample_background();

tesselate();

remove_regions();

regions_count();

save_regions_contours();

load_regions_contours();

% has_regions_contours_file();

Parameters:

regions_background_subdivs

regions_background_count

regions_background_merge_adjacent_tiles

regions_voronoi_scaling

regions_voronoi_erosion

22

regions_voronoi_exporting_neighborhoods

regions_labels

Quantification toolbox

Actions:

export_all_quantifications();

export_nuclei_quantifications();

export_perinuclei_quantifications();

export_regions_quantifications();

export_image_quantifications();

Parameters:

quantify_channel_green

quantify_channel_red

quantify_channel_blue

quantify_channel_cyan

quantify_channel_magenta

quantify_channel_yellow

channel_green_description

channel_red_description

channel_blue_description

channel_cyan_description

channel_magenta_description

channel_yellow_description

quantify_image_to_csv_file

quantify_image_only_nonmasked

quantify_nuclei_to_csv_file

quantify_nuclei_to_png_file

quantify_perinuclei_to_csv_file

quantify_regions_to_csv_file

quantify_regions_to_png_file

Tracking toolbox

Actions:

23

track_nuclei();

save_tracking_settings();

load_tracking_settings();

% has_tracking_settings_file();

Parameters:

tracking_prediction

tracking_prediction_memory

tracking_prediction_conservation

tracking_prediction_contribution

tracking_similarity_weight_proximity

tracking_similarity_weight_area

tracking_similarity_weight_eccentricity

tracking_similarity_weight_orientation

tracking_similarity_weight_intensity_sum

tracking_similarity_weight_intensity_inertia

tracking_similarity_weight_intensity_distribution

tracking_feature_distance_scaling

tracking_displacement_cutoff

tracking_nucleus_area_drop

tracking_nucleus_area_drop_threshold

Tracks Editing toolbox

Actions:

tracks_count();

remove_tracks();

remove_tracks_nonrevised();

save_tracks();

load_tracks();

Parameters:

tracks_save_only_revised

24

Appendix B: Quantified features

Nuclei, perinuclei, regions

Geometric:

• area

• area_masked (only nuclei)

• eccentricity (only nuclei)

• center_x (only nuclei)

• center_y (only nuclei)

Photometric:

• intensity_min

• intensity_max

• intensity_median

• intensity_sum

• intensity_quartile1

• intensity_quartile3

• intensity_mean

• intensity_stddev

• intensity_inertia (only nuclei and regions)

• intensity_80_mean (mean computed after dropping 10%of brightest and 10%of dimmest

pixels)

• intensity_80_stddev (standard deviation computed after dropping 10% of brightest and

10% of dimmest pixels)

• intensity_h{1,2}_mean

• intensity_t{1,2,3}_mean

• intensity_q{1,2,3,4}_mean

• linear_{025,050,075,100,200,300,400,500} (only halos)

• sigmoidal_{10,15,20}_{100,125,150,175,200} (only halos)

Bookkeeping:

• nucleus_id (only nuclei)

• corresp_nucleus_id (only perinuclei)

• region_id (only regions)

• is_toggled (only nuclei)

Image

25

Geometric:

• area

• area_masked

Photometric features of the image same as photometric features of nuclei.

26

Appendix C: Hints and troubleshooting

Batch file renaming
Swapping parts of individual file names. Under Linux, on Debian and derivatives, there is a Perl

script (originating from https://metacpan.org/release/File-Rename and installable via apt-get

install rename) that is a very convenient tool for renaming multiple files. For example, if you

want to rename a bunch of files named as follows:

MyExperiment_c0_t00.tif

MyExperiment_c1_t00.tif

MyExperiment_c2_t00.tif

MyExperiment_c0_t01.tif

MyExperiment_c1_t01.tif

MyExperiment_c2_t01.tif

it is sufficient to type:

rename 's/_c(\d)_t(\d+)/_t\2_c\1/' *.tif

(\1 and \2 are ordered references to two groups of digits captured within parentheses). If chan-

nel indices do not begin at 0 or their numbering is discontinuous, you should treat each channel

individually:

rename 's/_c1_t(\d+)/_t\1_c0/' *.tif

rename 's/_c2_t(\d+)/_t\1_c1/' *.tif

rename 's/_c4_t(\d+)/_t\1_c2/' *.tif

The same rename script can be installed under macOS (e.g., with brew install rename); analo-

gous tools exist for Windows (e.g., RegexRenamer).

If time-point indices do not begin at 0, as aworkaround youmay duplicate time frame for time=1

and name it appropriately for time=0 (do not forget to account for this quick fix in your further

analyses).

Upon frame extraction and/or bit depth conversion. Proper naming of files can be often as-

sured during conversion: for example, assume that you have a two-channel movie saved as two

multi-layer TIFF files. In the command line under Linux or macOS, having bash shell and Im-

ageMagick installed, you can use the following method to generate a series of properly named

input images:

export NFRAMES=100

27

https://metacpan.org/release/File-Rename

for i in $(seq -w 0 $(($NFRAMES - 1)); do

convert MyMovie_Channel1.tif[${i}] MyMMovie_t${i}_ch0.tif

convert MyMovie_Channel2.tif[${i}] MyMMovie_t${i}_ch1.tif

done

Bit depth conversion
Using tiff_expander.py. You can perform bit depth conversions with a featuring standalone

script tiff_expander.py that allows for converting images of any over-8-bit depth to 8-bit depth

with or without “clipping” of the over-the-range values (clipping can be advantageous when,

for example, a 14-bit image, that has very few pixels of intensity equal or higher than 2^12, is

converted to an 8-bit image by treating it as a 12-bit image; in this way, more “resolution” in

lower-value pixels will be preserved than in the case of 14-to-8 bit conversion). To learn how

to use the script, invoke it with argument -h (or check an example invocation in the docstring

of the script file). The script is usually placed in INSTALL_PREFIX/shared/shuttletracker/support,

requires python3-pil and python3-numpy, and works on multi-frame TIFF files. Currently it is

assumed that each channel is stored in a separate multi-frame TIFF file.

Using ImageMagick. Alternatively, you can perform bit depth conversions using ImageMagick

by passing an appropriate convert parameter: -evaluate multiply A_MULTIPLE_OF_TWO (in ad-

dition to -depth 8). This may be done simultaneously with image extraction from multi-frame

TIFFs:

export NFRAMES=100

for i in $(seq -w 0 $(($NFRAMES - 1)); do

convert Expt_Ch1.tif[${i}] -evaluate multiply 4 -depth 8 Expt_t${i}_ch0.tif

convert Expt_Ch2.tif[${i}] -evaluate multiply 4 -depth 8 Expt_t${i}_ch1.tif

done

Of note, both tiff_expander.py and ImageMagick (convert) will not process TIFF files that are

larger than 4 GB. Such files may be processed by ImageJ.

Interoperability with ImageJ
If your ImageJ stack exported to a multiple TIFFs cannot be read by ShuttleTracker, make a copy

of the original multi-frame TIFF file (it will be overwritten) and process it within ImageJ/Fiji as

follows:

1. Open the multi-frame TIFF file using menu File→ Open...

2. Press Shift+Z and in the pop-up window select Grayscale.

28

3. Overwrite the multi-frame TIFF file using menu File→ Save.

4. Using menu Plugins → Bio-formats → Bio-formats Exporter, dump the stack to individ-

ual TIFF files so that each time point and each channel end up in a separate image file

of names in which time points are padded with zeroes (to this end, place ticks in three

appropriate checkboxes); you may use LZW compression.

Resulting files may require renaming to conform to the expected naming convention.

Alternatively, you may use the ImageJ macro MasterTiffToAtomicTiffs.ijm deployed in directory

INSTALL_PREFIX/share/shuttletracker/support. This macro performs processing that is analo-

gous to the above-described procedure and names the exported files according to an expected

naming convention.

High-resolution displays
If you use a monitor display with increased pixel density, such as Retina, and graphical user

interface of ShuttleTracker looks uncomfortably small, you may scale up all graphical widgets

by setting the environmental variable QT_SCALE_FACTOR; for example, to enlarge widgets to

150% of their original size, set QT_SCALE_FACTOR to value 1.5. In Linux or macOS terminal, the

variable can be set in the bash shell with:

export QT_SCALE_FACTOR=1.5

before launching ShuttleTracker. Note that altering this setting globally may impact graphi-

cal user interfaces of other applications that also use Qt libraries. In the command line un-

der Linux and macOS, you may set the scaling only for the current launch of ShuttleTracker

(without impacting other applications) by prepending the path to the executable binary by

QT_SCALE_FACTOR=1.5.

If you work on Windows and various graphical widgets of ShuttleTracker are scaled dispropor-

tionately on your high-DPI display, you can create file qt.conf with the following contents:

[Platforms]

WindowsArguments = dpiawareness=0

and place this file next to the binary executable (ShuttleTracker.exe).

Multi-threaded image processing
The number of threads used by several image processing algorithms can be controlled by the en-

vironmental variable SHUTTLETRACKER_OPENCV_NUM_THREADS. In Linux or macOS terminal,

the variable can be set in the bash shell with:

29

export SHUTTLETRACKER_OPENCV_NUM_THREADS=2

before launching ShuttleTracker. Setting this number to values higher than 2 would result in a

marked speed-up for images significantly larger than 1000×1000 pixels.

30

Appendix D: Version history

Version 1.6.0 (UPCOMING)

• Input: can parse names of files exported by Operetta’s Harmony.

• Rendering: contours of nuclei can be white.

• Export: contours drawn over an exported image are antialiased.

• Preferences: Add a preference to retain channel view across image directory loadings.

• Quantification: relative inertia is computed non-canonically (intensity is squared).

• Input: image paths containing a channel-like chunk are interpreted correctly.

• Script: disallow a script command to run in parallel in another thread.

• Quantification: prevent manual quantification in the overlay pane.

• Pixmap cache: pixmaps are generated in parallel (if images in RAM).

Version 1.5.0 (2021-05-23)

• Nuclei detection: bright nuclei can be dimmed (”uniformization”) before thresholding.

• Can interactively quantify parts of the image in any selectable contour.

• More quantifiables: for quarters, thirds, and halfs of intensity distributions.

• Can quantify halos in finely adjusted Voronoi cells around nuclei.

• Quantifiable features of nuclear and region contours include relative inertia.

• Z-order added to facilitate manual contour selection.

• Nuclei editing: can split touching or overlapping nuclei with mouse.

• Nuclei editing: can center on a selected nuclear contour.

• Nuclei editing: can highlight externally specified nuclear contours.

• Regions editing: adjacent background tiles can be merged.

• Menu View: can display images with intermediate auto-leveling.

• Command line: more flexibility in parsing.

• No more spurious nuclear contours when thresholding baseline > 0.

• Contours of large perinuclei are no longer rhomboidal.

• Fixed a subtle bug that led to omission of minor C-shaped perinuclei.

• Fixed a subtle bug that gave rise to duplicate split orphan contours.

• Script-set channel descriptions propagate to the very bottom of data structures.

• Memory leaks due to Qt detachment have been removed.

• Scripting: the for-each-frame construct performs ”refresh”.

• Can read a sequence of images with initial time index > 0.

• Regions editing: background sampling faster by an O(magnitude).

31

• Joining of tracks and quant-files in Python module faster by an O(magnitude).

• Reorganized keyboard shortcuts.

• Nuclei ”incompleteness” status is now called just ”toggled”.

• Regions editing: removed subshifting of a putative background tile.

• Added an installer for the executable compiled with g++ under MinGW-w64.

Version 1.4.0 (2019-11-09)

• Input image files can be named according to more than one convention.

• Original images can be either stored in RAM or loaded on demand from disk.

• Image overlays can be optionally generated on demand to save RAM.

• Conversion to 8-bit may have non-integer resolution of camera bit depth.

• Conversion to 8-bit may globally subtract a given (background) intensity.

• Basic UNIX signal handling.

• Changed names of files in which toolboxen settings are stored.

Version 1.3.0 (2019-10-03)

• Perinuclei can avoid image background.

• Quantifications include intensity std dev, and 1st and 3rd quartile.

• Menu View shows channel descriptions, if available.

• Manual window has scalable font size.

• Background sampling is performed out of image masks.

• Script execution does not freeze GUI.

• Stop script execution upon failure (”panic()”).

• Checking latest available version upon startup is configurable.

• Nuclei matching for tracking is done using single-channel images.

• Log window displays all messages.

• Container recipe can be used by the latest Singularity.

• Can build source code distribution.

• Python module can load tracks partially.

Version 1.2.0 (2019-07-02)

• Can detect nuclei based on cytoplasmic staining.

• CVS-ize tesselation neighbors output file.

• Speed-up in-contour quantification ~10x.

• Add example standalone nuclei detection programs.

32

Version 1.1.0 (2019-06-02)

• Can create Voronoi cells around nuclei.

• Can propose background regions.

• Change format of region contours file.

• Label regions using numbers.

• Display log also in terminal.

Version 1.0.0 (2019-01-29)

• Include manual in PDF format.

• Promote to release version 1.0.0.

33

	Overview
	Overview: Capabilities

	Launching
	Launching with GUI
	Launching from terminal

	Input images
	Input images: File names
	Input images: Image formats
	Input images: Bit depth
	Input images: Metadata

	Viewing
	Navigation
	Enhanced view

	Toolboxen
	Toolbox: Image masking
	Toolbox: Nuclei detection
	Toolbox: Nuclei editing
	Toolbox: Perinuclei derivation
	Toolbox: Regions editing
	Toolbox: Quantification
	Toolbox: Tracking
	Toolbox: Tracks editing

	Scripting
	Preferences
	Further analysis
	Getting help
	Credits
	Appendix A: Programming interface
	Appendix B: Quantified features
	Appendix C: Hints and troubleshooting
	Batch file renaming
	Bit depth conversion
	Interoperability with ImageJ
	High-resolution displays
	Multi-threaded image processing

	Appendix D: Version history

