Importins promote high-frequency NF-κB oscillations increasing information channel capacity

Zbigniew Korwek⁼, Karolina Tudelska⁼, Paweł Nałęcz-Jawecki⁼, Maciej Czerkies⁼, Wiktor Prus, Joanna Markiewicz, Marek Kochańczyk, and Tomasz Lipniacki (⁼ equal contribution)

Supplementary Figures S1–S7

Supplementary information: Additional File 1

Fig. S1. Analysis of functional TNFα degradation in experimental conditions. (a) Immunostaining confocal images of unstimulated cells and cells stimulated for 15 and 30 min with fresh TNFα at 10 ng/ml concentration. (b) Immunostaining images of cells stimulated for 15 and 30 min with the media harvested from above cells stimulated for 6 h with TNFα, at the initial concentration of 10 ng/ml. (c,d) Simulated single cell (thin lines) and population average (bold lines) trajectories in responses to TNFα stimulation with concentration $D_1 = 10$ ng/ml (orange lines) and $D_2 = 1.15$ ng/ml (blue lines). At the assumed TNFα degradation coefficient $c_{deg} = 10^{-4}$ /s the initial TNFα concentration D_1 is reduced to D_2 after 6 hr.

Fig. S2. Model simulation trajectories showing unstimulated, equilibrated cells.

Fig. S3. Model simulation trajectories for A20-deficient cells in response to 10 ng/ml TNF α stimulation, studied experimentally by Lee et al. [12]. As in the experiment, A20-deficient cells respond by a stable NF- κ B translocation.

Fig. S4. Model simulated responses to single 10 ng/ml TNF α pulses of various durations. Simulations correspond to experimental data [30,64], showing single NF- κ B pulses of amplitude almost independent of pulse duration.

Fig. S5. Model simulated responses to the series of three 5 min, 10 ng/ml TNF α pulses, with pulse repeat of 60 min, 100 min, 200 min; corresponding to the experiment by Ashall et al. [34], who observed that almost all cells respond to first pulse, while about 30% fraction of cells respond to the second and third pulse for 60 min, 100 min repeats. For 200 min repeats almost all cells respond to three TNF α pulses.

Fig. S6. Model simulated responses to repeated 10 ng/ml TNF α pulses corresponding to the experiment by Zambrano et al. [40], who observed NF- κ B oscillations in response to pulses repeated every 45 min.

Fig. S7. Scatter plots showing evolution of the total $I\kappa B\alpha/total$ RelA ratio and nuclear NF- κ B/total NF- κ B ratio in response to 1 μ g/ml LPS. The scatter plot is based on quantified confocal images shown in Additional file 5.