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Supplementary Note 1: Comparison of circular and square channels 

Additional experiments were performed to test the hypothesis that the Ca-dependence of the 

droplet length at low Ca observed in channels with square cross section only exists in channels 

that allow the formation of gutters. For this purpose, a T-junction with channels of circular 

cross section was fabricated by the use of micro-milling. Two symmetrical halves of the device 

were fabricated by the use of a ball-end milling bit. Bonding the top and bottom halves, circular 

channels were obtained with a diameter of Dia = 400 μm. 

Supplementary Figure 1 shows the comparison of droplets produced in T-junctions with 

circular and square cross section. As expected, the Ca-dependence is very weak in circular 

channels in comparison to that in square channels where the length of droplets explodes as 

Ca → 0. This fundamental difference clearly demonstrates the significance of gutters in droplet 

formation at low Ca.  

 

Supplementary Figure 1 Measurements of the length of droplets as a function of Ca for two ratios of flow rates q for T-junctions of 

square (W = H = 360 µm) and circular (Dia = 400 µm) cross section. The error bars represent the standard deviations of the 

measurements. 



3 

 

 

Supplementary Note 2: Full solution for 𝑸𝐍 

The full solution of Eq. 2 (from the main text) and the equivalent equation 
𝛾𝑉N

∗

𝐶
= 𝑅G(𝑡) ⋅ (𝑄C −

𝑑𝑉N
∗/𝑑𝑡)/4, with 𝑄N =

𝑑𝑉N
∗

𝑑𝑡
 and 𝑅G =

𝛼GµC

𝐴G
2 (𝐿0 + 𝑡 ⋅ 𝑄D/𝑊𝐻), is:  

𝑄N(𝑡) =
𝑞Ca

𝑞Ca+𝛽
𝑄C ⋅ (1 − [

𝑡

𝜏D𝑙0
+ 1]

−(1+
𝛽

𝑞Ca
)

)   Eq. (1) 

where 𝛽 =
4

𝛼G

𝐴G
2

𝐶
 and 𝑙0 = 𝐿0/𝑊, with 𝐿0 the initial length of the droplet at the start of the 

necking regime, and where 𝜏D =
𝑊2𝐻

𝑄D
= 𝑊

𝑊𝐻

𝑞𝑄C
 is the time needed to increase the length of a 

droplet by 𝑊.  

Two characteristic times appear in Supplementary Equation 1, which is easily seen when, for 

example, expanding the last term using a Taylor series for short t: one time scale corresponds 

to the fixed part of the resistance, 
𝛼GµC𝐶𝐿0

4𝛾𝐴G
2 (=

𝑞Ca

𝛽
𝜏D𝑙0), the second to the time-varying part, 

𝐿0
𝑄D
𝑊𝐻

(= 𝜏D𝑙0). The first can be seen as a classical RC time, while the second arises from the rate 

at which the DP is supplied. The first one is negligible compared to the second one in the 

leaking regime (with 
𝑞Ca

𝛽
≪ 1), while both are of the same order in the squeezing regime (where 

𝑞Ca

𝛽
 is of order 1). Importantly, for the conditions studied here, the influence of both time scales 

is negligible and 𝑄N(𝑡) reaches a fixed value after a short initial transient. Before 

demonstrating this, we comment on the physical interpretation of the RC time. In classical RC 

circuits, the RC time corresponds to the time that is required for the relaxation of the system 

after a change in the potential applied over the circuit. Here, it can be interpreted as the 

relaxation of the interfacial surface to the equilibrium shape after a change in applied pressure. 

In the leaking regime, where the ratio between the two times scales, 
𝑞Ca

𝛽
, is small, the shape of 
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the interface almost instantaneously adapts to the rise in pressure due to the growth of the 

droplet. Hence, neck's shapes are close to the equilibrium shape in the leaking regime (see Fig. 

4a in the main article).  

The weak time-dependence of 𝑄N(𝑡) is easily seen from an analysis of the time-dependent term 

[
𝑡

𝜏D𝑙0
+ 1]

−(1+
𝛽

𝑞Ca
)

 in Supplementary Equation 1. This term ensures the acceleration from 𝑄N =

0 at the start of the necking stage to 𝑄N(𝑡) =
𝑞Ca

𝑞Ca+𝛽
𝑄C. Analysis of this term reveals that it 

decays very fast in comparison to the generation rate of long droplets, especially for 𝑞Ca < 𝛽. 

For example, the time required for this term to affect 𝑄N(𝑡) by less than 10% follows 

from [
𝑡

𝜏D𝑙0
+ 1]

−(1+
𝛽

𝑞Ca
)

< 0.1. Putting in 
𝛽

𝑞Ca
= 1, we obtain: 

𝑡

𝜏D𝑙0
> 2.16. Long droplets 

formed at low Ca require a much longer time than this (
𝐿D

𝑊
~

𝑡

𝜏D
 ). In fact, we used 𝐿D/𝑊 > 2.5 

as the minimum required length for the squeezing mechanism to be operative, based on the 

observation that shorter droplets do not fully occupy the junction before pinching off (in Fig. 

1). For all droplets formed in the leaking regime (𝑞Ca < 𝛽), the initial transient hence is short 

compared to the total formation time such that droplets propagate at a constant velocity during 

most of the necking stage. This theoretical analysis justifies why the time-dependent term in 

Supplementary Equation 1 can be neglected. This justification was verified with additional 

experiments, described next in Supplementary Note 3. 
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Supplementary Note 3: Experimental verification of time-independent 𝑸𝐍 

To experimentally verify the outcome of the above analysis, we estimated the instantaneous 

flow rate to the neck, 𝑄N, by measuring the speed of the tip of forming droplets1,2 using a high-

speed camera. We here use the notion that the position of the tip, 𝑋F, propagates at a rate equal 

to the sum of the flow rates of the neck and the DP  

𝑑𝑋F

𝑑𝑡
𝑊𝐻 = 𝑄N + 𝑄D       Eq. (2) 

or in dimensionless quantities  

𝑑𝑥F

𝑑𝑡∗ = 𝑄N/𝑄C + 𝑞        Eq. (3) 

where we normalized the position using 𝑥F = 𝑋F/𝑊 and the time using 𝑡∗ = 𝑡𝑄C/𝐻𝑊2. We 

measured 𝑋F (see the inset in Supplementary Figure 2a) for different Ca and fixed 𝑞 = 1. A 

plot of 𝑥F versus 𝑡∗ shows that the tip position increases at a constant rate during most of the 

necking stage, i.e. 
𝑑𝑥F

𝑑𝑡∗  is constant in time for each curve (Supplementary Figure 2a). As evident 

from Supplementary Equation 3, this implies that 𝑄N/𝑄C is constant in time during the necking 

stage (and so are 𝑄B and 𝜂 = 𝑄B/𝑄N).  

The notion that the slope of the curves in Supplementary Figure 2a is a measure for the gutter 

flow rate is used to test the consistency of the theoretical relation 𝜂 =
𝛽

𝑞Ca
 together with the 

value 𝛽 = 7.4 ∙ 10−5 ± 0.3 ∙ 10−5 reported in the main article, which was obtained from 

measurements of the final droplet length. Rewriting Supplementary Equation 3 in terms of 𝜂 =

𝑄B

𝑄N
 using 

𝑄N

𝑄C
=

𝑄N

𝑄N+𝑄B
=

1

1+𝜂
 gives  

𝜂 = (
𝑑𝑥F

𝑑𝑡∗ − 𝑞)
−1

− 1       Eq. (4) 

such that the (time-averaged) leaking strength 𝜂 can be obtained from the (time-averaged) 

slopes 
𝑑𝑥F

𝑑𝑡∗  of the curves in Supplementary Figure 2a according to  
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𝜂 = (
𝑑𝑥F

𝑑𝑡∗ − 𝑞)
−1

− 1       Eq. (5) 

The thus obtained values of 𝜂 confirm the earlier reported theoretical relation 𝜂 =
𝛽

𝑞Ca
 and the 

reported value for 𝛽 as shown in Supplementary Figure 2b.  

 

Supplementary Figure 2 Experimental analysis of the instantaneous tip speed and the corresponding time-averaged strength of 

leaking 𝜂. (a) Dotted lines – normalized measurements of the position of the tip 𝑥F = 𝑋F/𝑊 as a function of the normalised time: 

𝑡∗ = 𝑡𝑄C/𝐻𝑊2. 𝑡∗ = 0 is the start of the formation of a droplet. Different measurement sets correspond to different values of Ca from 

1.6 ∙ 10−5 to 4.3 ∙ 10−3 as described in the plot. During the necking stage (highlighted by straight blue lines), 𝑥F increases 

approximately linearly with time. (b) Time-averaged 𝜂 as a function of Ca. 𝜂 was calculated using Supplementary Equation 5, where 

𝑑𝑥F/𝑑𝑡∗ was determined from the curves in (a) using a linear fit of the necking stage. Red line: 𝜂 =
𝛽

𝑞Ca
 (where 𝑞 = 1) with 𝛽 =

7.4 ∙ 10
−5

. This plot shows the consistency of these measurements with the analysis presented in the main text. All measurements 

made for 𝑞 = 1 for the hexadecane-FC-40 fluid system in a T-junction with 𝑊 = 𝐻 = 360 µm. 
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Supplementary Note 4: Leaking regime for different working fluids 

All experiments in the main article and the ones in the Supplementary Information up to here 

were performed with FC-40 (viscosity: 4.1 mPa·s) as the DP and hexadecane (viscosity: 3.6 

mPa·s) as the CP, the interfacial tension being 7.3 mN·m-1. In order to show that the leaking 

regime described in the paper is not specific for this combination of liquids we performed 

additional experiments with different liquid combinations (see Supplementary Tables 1 – 3). 

Care was taken to choose these working fluids such that the CP wets the walls of the 

polycarbonate microchannels. While the combination of liquids used in the main article is 

surfactant free, the surfactant Span 80 (Sigma-Aldrich) was added in a 1%wt concentration for 

the other presented combinations to avoid wetting by the DP. The universality of the observed 

behaviour is shown in Supplementary Figure 3 for the different fluid systems. 

 

Supplementary Table 1: Viscosities of liquids used in the experiments (at 22C). 

Symbol Description Viscosity [mPa·s] 

CP1 hexadecane 3.6 

CP2 ~50 wt. % of hexadecane in n-hexane 0.93 

CP3 ~10% wt. % of hexadecane in n-hexane 0.38 

   

DP1 ~60 wt. % of glycerine in water 10.3 

DP2 ~40 wt. % of glycerine in water 3.7 

DP3 water 0.95 

 

Supplementary Table 2: Ratio of viscosities DP to CP (at 22C). 

 DP1 DP2 DP3 

CP1 2.9 1.0 2.6 

CP2 11.1 4.0 1.0 

CP3 27.1 9.7 2.5 
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Supplementary Table 3: Interfacial tension (in mN·m-1) of the different combinations of liquids (at 22C). 

 DP1 DP2 DP3 

CP1 3.6 4.1 4.8 

CP2 4.4 4.6 5.3 

CP3 4.8 4.9 5.4 
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Supplementary Figure 3: The leaking regime and the L-S transition for different liquid properties (see legends and Supplementary 

Tables 1-3 for references): (a) linear plot, (b) log-log plot including the theoretical prediction 𝜂 =
𝛽

𝑞Ca
. For all model lines, the same 

values were used as obtained in Fig. 3 (𝑙0 = 1.46 ± 0.14, 𝑣N0 = 2.04 ± 0.11, and 𝛽 = 7.4 ∙ 10−5 ± 0.3 ∙ 10−5).   
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Supplementary Note 5: Leaking regime for square channels of different 

widths 

The equation for the time-averaged leaking strength (𝜂 =
𝛽

𝑞Ca
) provided in the main article is 

non-dimensional, and hence should not depend on the used channel width. We confirm this 

with additional experiments using a square channel of a different width (200 µm). 

Supplementary Figure 4 presents a comparison for 𝑊 = 𝐻 = 200 µm and 𝑊 = 𝐻 = 360 µm, 

showing that the two data sets indeed collapse on top of each other.  
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Supplementary Figure 4: Comparison of measurements for the leaking regime for two square channels of different widths for the 

hexadecane-FC-40 fluid system: (a) linear plot, (b) log-log plot including the theoretical prediction 𝜂 =
𝛽

𝑞Ca
. For all model lines, the 

same values were used as obtained in Fig. 3 (𝑙0 = 1.46 ± 0.14, 𝑣N0 = 2.04 ± 0.11, and 𝛽 = 7.4 ∙ 10−5 ± 0.3 ∙ 10−5). 
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Supplementary Note 6: Leaking regime for different channel aspect ratios  

The leaking mechanism is a feature of the formation of droplets in channels with non-circular 

cross section. We hence expect this mechanism to also feature in rectangular channels with 

different aspect ratios. As the aspect ratio imposes the curvature of the interfaces during droplet 

formation as well as the size of the gutters, the quantitative dependence of droplet size on Ca 

and 𝑞 is expected to depend on the aspect ratio. Experiments performed in channels with aspect 

ratios 𝐻/𝑊 = 0.5 and 𝐻/𝑊 = 1 confirm that the general features are the same, while the 

quantitative features depend on aspect ratio, see Supplementary Figure 5 and Supplementary 

Table 4.  

A closer look at the leaking regime shows a lower slope in the log-log plot for the channel with 

𝐻/𝑊 = 0.5, suggesting that some details of the mechanism of leaking (such as the linear 

relation between the curvature difference and the volume collected behind the forming droplet) 

depend on the aspect ratio. A more extensive analysis of the effect of channel aspect ratio and 

cross-sectional shape is beyond the scope of the present paper and part of future work. 

 
Supplementary Table 4: Comparison of fitting parameters for rectangular channels with different aspect ratio. 

Aspect ratio 𝐻/𝑊 𝑙0 𝑣N0 𝛽 

1 1.46 ± 0.14 2.04 ± 0.11 7.4 ∙ 10−5 ± 0.3 ∙ 10−5 

1/2 2.27 ± 0.24 2.54 ± 0.37 2.1 ∙ 10−5 ± 0.1 ∙ 10−5 
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Supplementary Figure 5: Comparison of measurements for the leaking regime for two different channel aspect ratios for the 

hexadecane-FC-40 fluid system and 𝑞 = 1: (a) linear plot, (b) log-log plot.   
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Supplementary Note 7: How droplet length depends on 𝒒 = 𝑸𝐃/𝑸𝐂 at fixed 

𝑸𝐂 or 𝑸𝐃  

In Fig. 1b/c of the main article we showed experimental series for the length of droplets in 

which we varied Ca for fixed ratios of flow rates 𝑞 = 𝑄D 𝑄C⁄ . In order to also systematically 

test the functional dependence of the droplet length on 𝑞 we performed additional series of 

experiments varying 𝑞 for fixed values of 𝑄D or 𝑄C. Note that fixing 𝑄C fixes Ca, while fixing 

𝑄D fixes 𝑞Ca. 

Let us consider again the model equation for the length of a droplet: 

𝑙D = 𝑙0 + 𝑞𝑣N0(1 +
𝛽

𝑞Ca
)      Eq. (6) 

where Ca = μC𝑈/𝛾 and 𝑈 = 𝑄C/𝐻𝑊. Hence Ca = 𝜑𝑄C, with 𝜑 =
µC

𝛾𝑊𝐻
 (= 1.06 ∙ 10−6 μl ⋅

h−1 for the experiments with FC-40 as the DP and hexadecane as the CP).  

Supplementary Equation 6 can be rewritten in two versions: 

 The first variant for varying 𝑄D at fixed 𝑄C, which also fixes Ca, such that the droplet length 

linearly depends on 𝑞, according to 

𝑙D = 𝑙0 + 𝑞𝑣N0 +
𝛽𝑣N0

𝜑𝑄C
      Eq. (7) 

Curves of 𝑙D versus 𝑞 for different values of 𝑄C are hence expected to have the same 

slope (𝑣N0), but different offsets (𝑙0 +
𝛽𝑣N0

𝜑𝑄C
). This is indeed the case, see Supplementary 

Figure 6a. 

 The second variant for varying 𝑄C at fixed 𝑄D, which also fixes 𝑞Ca, such that the droplet 

length still linearly depends on 𝑞, now according to 

𝑙D = 𝑙0 + 𝑞𝑣N0 (1 +
𝛽

𝜑𝑄D
)      Eq. (8) 

Curves of 𝑙D versus 𝑞 for different values of 𝑄D should hence have the same offset (𝑙0) but 

different slopes 𝑣N0 (1 +
𝛽

𝜑𝑄D
), which is indeed the case, see Supplementary Figure 6b. 
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Supplementary Figure 6 Normalised length of droplets as a function of 𝑞 = 𝑄D/𝑄C for the hexadecane-FC-40 fluid system in a T-

junction with 𝑊 = 𝐻 = 360 µm. (a) for four measurement series with varying 𝑄D at fixed 𝑄C; model: Supplementary Equation 7. 

(b) for four measurement series with varying 𝑄C at fixed 𝑄D; model:  Supplementary Equation 8. For all model lines, the same values 

were used as obtained in Fig. 3 (𝑙0 = 1.46 ± 0.14, 𝑣N0 = 2.04 ± 0.11, and 𝛽 = 7.4 ∙ 10−5 ± 0.3 ∙ 10−5). 
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Supplementary Note 8: Stability of feeding system 

Our previous work3 showed that results of microfluidic experiments may be affected by 

oscillations in flow due to non-continuous rotation of the screw of the syringe pumps. In all 

experiments presented in this work we used precise syringe pumps (Cetoni, Low Pressure 

Syringe Pump neMESYS 290N) designed to be used in microfluidics. In order to verify that 

our measurements in the leaking regime are not influenced by pump oscillations, we carried 

out additional experiments with syringes of a different diameter since oscillations are known 

to be depended on syringe size. The data presented in Supplementary Figure 7 show that the 

results for different syringes are almost identical, confirming that there are no significant 

temporal oscillations in our feeding system.  

 

Supplementary Figure 7: Measurements of the time-averaged leaking strength in the leaking regime for two different syringe sizes 

for the hexadecane-FC-40 fluid system in a T-junction with 𝑊 = 𝐻 = 360 µm and for the ratio of flows  𝑞 = 1. Inset –log-log plot 

of the same data as in the main plot. Dashed line – theoretical curve for the same model parameters as in the main article (𝑙0 = 1.46 ±

0.14, 𝑣N0 = 2.04 ± 0.11, and 𝛽 = 7.4 ∙ 10−5 ± 0.3 ∙ 10−5).  
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