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Supplementary Methods

1 Derivations

1.1 Background

We consider a general model of a biochemical reaction network represented as a conditional probability
distribution, P (Y |X = x), of an output value, Y , given an input value, x. Both input and output can
in principle be multidimensional, i.e. Y = (Y1, ..., Yl) and x = (x1, ..., xk). The information capacity,
C∗, is then defined as the maximal mutual information, I(X,Y ), between the input, X, and the output,
Y , over a set of continuous and strictly positive probability distributions. Precisely,

C∗ = max
P(x)

I(X,Y ) = max
P(x)

∫
X

∫
Y
P(x)P(y|X = x) log2

P(y|X = x)

P(y)
dydx, (S.1)

where X and Y denote spaces of possible values of the input and output, respectively. The distribution,
for which the maximum is achieved is referred to as the optimal input distribution and is denoted as,
P ∗(x). Calculation of the information capacity, C∗, and finding the optimal input distribution, P ∗(x),
is commonly solved by Blahut-Arimoto algorithm (BAA) [S1, S2], which enforces discretisation of
the input and output values. Upon discretisation, the maximum of the Eq. S.1 can be found using
several conventional optimisation schemes, e.g. steepest decent method [S3, S4]. Whereas BAA is
applied across different disciplines [S5, S6, S7], in the context of biochemical networks, an attractive
and computationally undemanding approach of ’small noise approximation’ (SN) was proposed in [S3].
This however assumes limited stochasticity of the examined system. We currently lack examples where
the information capacity is calculated for biochemical signaling pathways with multiple inputs and
multiple outputs, as the existing methods either lack generality or are computationally prohibitive. To
overcome these limitations, we take an asymptotic approach. Specifically, we consider N independent
copies of the same signaling system

Y (j) ∼ P (Y |X = x), (S.2)

for j going from 1 to N , and their joint output

YN = (Y (1), . . . , Y (N)).

The communication channel with the input X and the output, YN , is then defined as

P (YN |X = x) = P ((Y (1), . . . , Y (N))|X = x) =

N∏
j=1

P (Y (j)|X = x),

where the latter equality results from the assumed independence of individual outputs. Then, the
corresponding information capacity problem has the form

C∗N = max
P (x)

I(X,YN ) (S.3)

with the optimal input distribution denoted as P ∗N (x).

Note, that in the above notation C∗1 and C∗ are equivalent.

1.2 Asymptotically optimal input distribution, P ∗JP (x)

The problem of finding the distribution P ∗N (x) has been solved in statistics in the context of non-
informative priors. Precisely, it has been shown (e.g. in [S8, S9, S10]) that under general regularity
conditions (see the references [S9] and [S11] for details of these conditions)

P ∗N (x)
N→∞−−−−→ P ∗JP (x), (S.4)
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where P ∗JP (x) is the Jeffreys prior [S12] defined as

P ∗JP (x) ∝
√
|FIM(x)|, (S.5)

where |·| is the matrix determinant; FIM is the Fisher information matrix

FIM(x)i,j = E
(
∂ ln(P (Y |X = x))

∂xi

∂ ln(P (Y |X = x))

∂xj

)
, (S.6)

and E(·) is the expected value with respect to Y at a fixed x. The exact asymptotic description of
the optimal input distribution by the Jeffreys prior, Eq. S.4, is derived without any approximations
to the input-output model, P (Y |X = x) [S9].

1.3 Optimal input distribution as a bayesian non-informative prior

For illustration of the relationship between the maximisation of the Eq. S.3 and the problem of
finding a non-informative prior distribution in Bayesian inference, consider X to be a parameter
vector inferred from data YN . In Bayesian statistics the prior distribution P (X) is translated into
a posterior distribution, P (X|YN = yn), representing the knowledge about the parameter X present
in the observed data yN . If, in the inference process, no prior knowledge about the parameter, X,
is available, it is desirable to use a non-informative prior distribution, i.e. a prior that impacts the
results of estimation as little as possible. Non-informativeness of a prior distribution can be expressed
in terms of the mutual information. Consider the mutual information, I(X,YN ), written in terms of
entropy differences, Eq. 14-17 of the main paper,

I(X,YN ) = H(X)−H(X|YN ), (S.7)

where H(X) is the entropy of the prior distribution P (x) and H(X|YN ) is the average entropy of
the posterior distribution, P (X|YN = yn). The entropy H(X) represents the overall prior uncertainty
about the parameter, whereas H(X|YN ) quantifies the average uncertainty about the parameter, when
data yN is available. Therefore, the mutual information I(X,YN ) can be interpreted as a measure of
how much can be learned from data YN , i.e. the missing knowledge. Therefore, among all considered
priors the one that maximises the missing knowledge, quantified by the mutual information I(X,YN ),
can be seen as the least informative. A prior distribution that is least informative in terms of the
mutual information between X and YN is called the reference prior. In the asymptotic scenario, i.e.
large N , under certain regularity conditions [S9, S11] the Jeffreys prior (S.5) is asymptotically least
informative [S8, S9, S10, S13, S14].

1.4 Derivation of C∗A

A strict and elegant proof that

C∗N −
k

2
log2(N) −−−−→

N→∞
C∗A, (S.8)

where

C∗A = log2

(
1

(2πe)
k
2

∫
X
|FIM(x)|

1
2dx

)
, (S.9)

is shown in [S9]. Here, for the convenience of the reader, largely following [S15], we present a scheme
behind one of the possible derivations.

Primarily, instead of the mutual information I(X,YN ) between the signal, X, and the output, YN ,
consider the mutual information I(X, X̂) between the signal, X, and the maximum likelihood estimator
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(MLE), X̂, of the signal, X. Obviously, I(X,Y ) ≥ I(X, X̂), i.e. the estimator cannot contain more
information about the signal than the output. Nevertheless, it can be shown [S16] that for large N

I(X,YN ) ≈ I(X, X̂)

as MLE is ’asymptotically sufficient’ [S17]. Therefore, I(X, X̂) should serve as a good proxy for
I(X,YN )

I(X,YN ) ≈ H(X̂)−H(X̂|X).

Secondly, the asymptotic theory of the MLEs states that X̂, obtained from N independent copies of
Y , has the Gaussian distribution [S16]

X̂ ∼ N (x,
1

N
FIM(x)−1).

Using the formula for the entropy of k-dimensional normal distribution1, we get

I(X,YN ) ≈ H(X̂)−
∫
X
P (x)

1

2
log2

(2πe)k

|N · FIM(x)|
dx.

Thirdly, if the variability of the signal, X, is large compared to uncertainty in the estimator then
H(X) ≈ H(X̂). Hence, we can write

I(X,YN ) ≈ H(X)−
∫
X
P (x)

1

2
log2

(2πe)k

Nk · |FIM(x)|
dx. (S.10)

Fourthly, Eq. S.3 states that C∗N is maximised for P ∗JP (x) ∝
√
|FIM(x)|, therefore denoting

V =

∫
X

√
|FIM(x)|dx

and substituting

P (x) =
1

V

√
|FIM(x)|,

into Eq. S.10 yields

C∗N ≈ −
∫
X

1

V
|FIM(x)|

1
2 log2

(
1

V
|FIM(x)|

1
2

)
dx−

∫
X

1

V
|FIM(x)|

1
2 log2

(2πe)
k
2

N
k
2 · |FIM(x)|

1
2

dx

= −
∫
X

1

V
|FIM(x)|

1
2 log2

1

V
dx−

∫
X

1

V
|FIM(x)|

1
2 log2 |FIM(X)|

1
2dx

−
∫
X

1

V
|FIM(x)|

1
2 log2

(
(2πe)

k
2

)
dx+

∫
X

1

V
|FIM(x)|

1
2 log2 |FIM(x)|

1
2dx

+

∫
X

1

V
|FIM(x)|

1
2 log2N

k
2 dx

= log2 V − log2(2πe)
k
2 +

k

2
log2N.

Finally, we obtain

C∗N ≈
k

2
log2N + log2

(
1

(2πe)
k
2

∫
X
|FIM(x)|

1
2dx

)
. (S.11)

1If Z ∼ N (µ,Σ) then H(Z) = 1
2

log2((2πe)k|Σ|), where | · | is the matrix determinant, and k is the dimension of Z.
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1.5 Negative values of asymptotic capacity and an auxiliary approximation C∗JP

As explained in the main paper, the asymptotic information capacity C∗A can take negative values.
This, however, does not result from a caveat of our approach but from mathematical properties of
how information scales with increasing N (i.e. the number of receivers / cells). There exist many
other widely accepted information theoretic measures that can take negative values. Differential
entropy is probably the best-known example. Other examples include interaction information (i.e.
certain form of conditional mutual information) or even mutual information in specific settings. (e.g.
H(X) − H(X|Y = y) can be negative if H(X|Y = y) is not averaged over all possible y’s as in the
definition of standard mutual information: H(X)−H(X|Y )).

In scenarios, where C∗A is negative, it is not a good approximation of C∗1 , which is a positive quantity.
Therefore, for values of C∗A close to zero it should be used with caution when aiming to approximate
C∗1 . Its asymptotic interpretation is, however, valid also for negative values, as explained in the main
paper. Below we describe an alternative approximation that is guaranteed to be positive. To this end,
instead of approximating C∗N with the Eq. S.11, we replace the exact optimal input distribution, P ∗(x),
in the Eq. S.1 with its asymptotic version, P ∗JP (x). We denote this approximation C∗JP . Precisely,

C∗JP =

∫
X

∫
Y
P ∗JP (x)P(y|X = x) log2

P(y|X = x)

P(y)
dydx, (S.12)

where P(y|X = x) =
∫
X P (y|X = x)P ∗JP (x)dx. In other words, C∗JP is defined as the mutual in-

formation between the output, Y , and input, X, being distributed according to the asymptotically
optimal input distribution, P ∗JP (x). Therefore, similarly to the mutual information, C∗JP is the positive
quantity.
In practical applications, calculation of C∗JP is computationally more demanding than of C∗A. Precisely,
calculation of both C∗A and C∗JP involves evaluation of the Fisher information as wells as requires
integration with respect to input values. In addition to the above two steps, computation of C∗JP
involves integration with respect to the output for each value of the input. Hence, the difference in
the computational cost increases significantly with the dimension of the output, Y , and of the input,
X. Moreover, for many distributions, including the exponential family, the Fisher information has an
explicit form or can be expressed in terms of derivatives of moments (Section 6). In such scenarios,
Fisher information can be computed without evaluating P (Y |X = x). Therefore, computation of C∗A
is in general significantly simpler and computationally less demanding than of C∗JP . Moreover, in
contrast to C∗A, C∗JP cannot be expressed as a relatively simple and conveniently applicable equation
that links sensing precision, i.e., Fisher information, with the overall signaling fidelity, quantified as
the information capacity.

2 Test model

For comprehensive comparison of the capacities, C∗A, C∗JP , C∗SN with C∗1 we have designed a test
model. For the test model all methods are computationally feasible. Precisely, we considered a system
composed of L identical copies of a biochemical sensor, e.g. a receptor or a kinase. Suppose, each copy
can be either in an active or inactive conformation and assume that the probability of each copy being
in the active conformation is given as the Michaelis-Menten function of a signal S

h(S) =
S/Kd

1 + S/Kd
,

whereby Kd is the sensor’s dissociation constant. In addition, we assumed that the sensors are exposed
to competing ligands that resemble the cognate ligand so that the signal S is composed of two sources.
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Precisely, S = X +
1

λ
XF , where X and XF are the concentrations of the cognate (true) and non-

cognate (false) ligands, respectively. The sensor’s selectivity factor is given by λ =
KF

d

Kd
, where KF

d

is the sensor’s dissociation constant for the non-cognate ligand. The higher λ is, the less likely is
the sensor to bind the non-cognate ligand. The variability in the non-cognate ligand concentration
is represented by the probability distribution P (XF ). Given that each copy takes its conformation
independently, the distribution of the number of active sensors, Y , is given by the binomial distribution

P (Y |S) = Bin(h(S), L).

Assuming that the concentration of the cognate ligand, X, and the number of active sensors, Y , are
the input and output of the system, respectively, then

P (Y |X = x) =

∫
XF

P

(
Y |S = x+

1

λ
xF

)
P (XF = xF )dxF , (S.13)

represents the input-output relationship of the system with XF being the space of possible concentra-
tions of the non-cognate ligands. Changing settings of this model allowed us to thoroughly challenge
the tested methods. In total, we have considered 27 different scenarios by combining different variants
of the probability distributions P (XF); sensor copy number, L; and of the selectivity factor, λ. In
each scenario, we have calculated capacities as a function of the standard deviation of the non-cognate
ligand, σXF

.

2.1 Test scenarios

To compare the capacities, C∗A, C
∗
JP, C

∗
SN, C

∗, we have considered

1. three distributions of the concentrations of the non-cognate ligands, P (XF ): log-normal, expo-
nential and gamma distribution;

2. three values of the copy number: L ∈ {50, 100, 500};

3. three values of the selectivity factor: λ ∈ {10, 2, 1};

which in combination gave 27 different scenarios. In all scenarios, we assumed Kd = 1. In each sce-
nario, we have calculated the information capacities as a function of the standard deviation, σXF , of
the distribution P (XF ). For the log-normal and gamma distributions, we assumed that their mode is
equal to 1 to match the sensor’s Kd, and adjusted the distribution’s mean and variance accordingly.
In the case of the exponential distribution the mode cannot be tuned as it is equal to 0 regardless of
parameters.

2.2 Numerical comparison

The comparison of the four capacities, C∗A, C
∗
JP, C

∗
SN, and C∗, in all 27 considered scenarios is pre-

sented in Supplementary Figure 1 and Supplementary Figure 2. The summary plot resulting from this
comparison constitutes Fig. 1 of the main paper.

As discussed in the main paper, C∗A is on average more accurate than C∗SN. The more detailed
comparison presented here includes C∗JP . It reveals an interesting aspect regarding whether C∗JP or
C∗A is a more accurate approximation of C∗.
In the derivation of C∗JP only one approximation is used, i.e. of the optimal input distribution, Eq.
S.12. On the other hand, in the derivation of C∗A, two approximations are used, i.e. of the information
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capacity formula, Eq. S.10, and of the optimal input distribution, the derivation prior to Eq. S.11. The
above suggests, that C∗JP should be, in general, a better approximation of C∗. Supplementary Figure
1 and Supplementary Figure 2 show that typically this is the case. However, in certain scenarios, e.g.,
exponential distribution with λ = 1 and L = 500, C∗A, is a better approximation than C∗JP , which may
seem counter-intuitive. To explain why the above is possible, the following argument should be made.
Approximations can either over- or underestimate a true value. If within one approximation, two ap-
proximations are used concurrently, each approximation may happen to have an opposite direction. If
this is the case, the inaccuracies of two approximation will partly cancel out. Therefore, the seemingly
less accurate approximation, C∗A, which involves two approximations, can have, in certain scenarios,
higher accuracy than C∗JP , which involves one approximation.

For twelve representative scenarios, we have also plotted the optimal input distributions calculated
using the Blahut - Arimoto algorithm, P ∗(x); Jeffreys prior, P ∗JP(x); and small noise approximation
P ∗SN(x).Supplementary Figure 3 shows that the calculated distributions exhibit only minor differences.

2.3 Technical details

Fisher information of the model, i.e. of the probability distribution, Eq. S.13, was calculated by
numerical integration of the derivative of log-likelihood according to the Eq. S.6. Calculation of the
information capacity, C∗1 , using the Blahut-Arimoto algorithm [S1] was implemented in Matlab. Both
codes are available upon request.

2.3.1 Comparing continuous and discrete distributions

In the Supplementary Figure 3 we compare the results of the Blahut-Arimoto algorithm, which operates
on discrete inputs, with continuous input distributions of other considered methods. Therefore, in order
to present it graphically on comparable scales, discrete optimal input distribution of the BAA has been
transformed into a continuous probability distribution. Suppose, the discrete probability distribution
{p1, p2, . . . , pm} defined on a set of real numbers x1 < x2 < . . . < xm is the output of the BAA.
For such probability distribution we have defined a corresponding piecewise constant density function,
p(x),

p(x) =



0 for x < x1
p1

1
2
(x2−x1)

for x1 ≤ x < (x1+x2)
2

p2
1
2
(x3−x1)

for (x1+x2)
2 ≤ x < (x2+x3)

2

. . .
pi

1
2
(xi+1−xi−1)

for (xi−1+xi)
2 ≤ x < (xi+xi+1)

2

. . .
pn

1
2
(xn−xn−1)

for (xn−1+xn)
2 ≤ x < xn

0 for xn ≤ x

.

The above definition ’extends’ the values of the discrete probabilities, pi’s, around points, xi’s, by
placing points of discontinuity half-way between xi−1 and xi, for i changing from 2 to m, and sets
probability value proportionally to the discrete probability, pi and inversly to the length of the interval.

Page 7



L=50 L=100 L=500

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0
1
2
3
4

−1
0
1
2
3
4

0

2

4

ca
pa

ci
ty

 (b
it)

ca
pa

ci
ty

 (b
it)

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

1
2
3
4

0
1
2
3

0
1
2
3

L=50 L=100 L=500

ca
pa

ci
ty

 (b
it)

= 10

= 2

= 1

= 10

= 2

= 1

= 10

= 2

= 1

Exponential Disitribution Gamma Distribution

Lognormal Distribution

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0
1
2
3
4

−1

0
1
2
3

−1
0
1
2
3

L=50 L=100 L=500

Method
C*A C*JP

C*SN C*1

Supplementary Figure 1: Channel capacities C∗A, C
∗
JP, C

∗
SN, C

∗
1 for the biochemical sensor model in 27

considered scenarios.

Page 8



R
el

at
iv

e 
de

vi
at

io
n 

(%
)

R
el

at
iv

e 
de

vi
at

io
n 

(%
)

R
el

at
iv

e 
de

vi
at

io
n 

(%
)

Exponential Disitribution Gamma Distribution

Lognormal Distribution

= 10

= 2

= 1

= 10

= 2

= 1

= 10

= 2

= 1

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

L=50 L=100 L=500

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

L=50 L=100 L=500

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

L=50 L=100 L=500 Method
C*A
C*JP

C*SN

Supplementary Figure 2: Relative deviation of the capacities, C∗A, C∗JP, and C∗SN with respect to ca-
pacity C∗1 in 27 scenarios of Supplementary Figure 1.

Page 9



Lo
gn

or
m

al
 d

is
tri

bu
tio

n

0.00

0.01

0.02

0.03

0.04

1e−05 1e−01 1e+03 1e+07

0.00

0.01

0.02

0.03

0.04

1e−05 1e−01 1e+03 1e+07

0.00

0.01

0.02

0.03

1e−05 1e−01 1e+03 1e+07

0.00

0.01

0.02

0.03

0.04

1e−05 1e−01 1e+03 1e+07

0.00

0.01

0.02

0.03

1e−05 1e−01 1e+03 1e+07

0.00

0.01

0.02

0.03

1e−05 1e−01 1e+03 1e+07

0.00

0.01

0.02

0.03

1e−05 1e−01 1e+03 1e+07

0.00

0.01

0.02

0.03

0.04

1e−05 1e−01 1e+03 1e+07

0.00

0.01

0.02

0.03

1e−05 1e−01 1e+03 1e+07

0.00

0.01

0.02

0.03

1e−05 1e−01 1e+03 1e+07

0.00

0.01

0.02

0.03

1e−05 1e−01 1e+03 1e+07

0.00

0.01

0.02

0.03

1e−05 1e−01 1e+03 1e+07

0.00

0.01

0.02

0.03

0.04

1e−05 1e−01 1e+03 1e+07

0.00

0.01

0.02

0.03

1e−05 1e−01 1e+03 1e+07

0.00

0.01

0.02

0.03

1e−05 1e−01 1e+03 1e+07

Ga
m

m
a

 d
is

tri
bu

tio
n

Ex
po

ne
nt

ia
l

 d
is

tri
bu

tio
n

de
ns

ity
de

ns
ity

de
ns

ity
de

ns
ity

de
ns

ity

= 10 = 2 = 1

Method P*JP P*P*SN

Supplementary Figure 3: Comparison of the optimal input distributions calculated using the Blahut-
Arimoto algorithm, P ∗(x); Jeffreys prior, P ∗JP(x); and small noise approx-
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3 Type I and type III interferons signaling model

In humans three different types of interferons (IFNs) exist. Type I IFNs comprise sixteen variants,
including IFN-α, whereas type III IFNs consist of four variants, including IFN-λ1 [S18, S19, S20]. Type
I IFN variants exert their actions through cognate two subunits receptor complexes IFNAR1/IFNAR2.
IFNAR1 is constitutively associated with tyrosine kinase 2 (TYK2), whereas IFNAR2 with Janus
tyrosine kinase 1 (JAK1). Binding of the type I variant to its cognate receptor complex results in
trans-phosphorylation of JAK1 and TYK2. The activated kinases then phosphorylate cytoplasmic
tails of the IFNAR1/IFNAR2. Cytoplasmic tails of both receptor complexes serve as docking sites for
the recruitment of several proteins, most importantly of STAT1 and STAT2. Following phosphorylation
activated STATs form homodimers, p-STAT1/1, or heterodimers, p-STAT1/2, which translocate to
the nucleus, where they bind DNA to specific cognate sites in concert with a variety of other nuclear
factors and serve as active transcription factors. Dephosphorylation in the nucleus results in nuclear
export of STATs and making them available to subsequent phosphorylation/dephosphorylation cycles
[S21, S22].
Type III variants, instead of IFNAR1/IFNAR2, bind to the cognate IFNLR1/IL10Rα receptor complex
where IFNLR1 is constitutively associated with tyrosine kinase 2 (TYK2), whereas IL10Rα with JAK1
[S23]. Downstream signaling cascade, according to the current understanding [S23, S24, S25], appears
to follow the same pattern as described above for type I variants.
As IFN-α and IFN-λ1 are often studied in experiments, e.g. [S25, S26], we used these two variants as
representatives of the type I and type III IFNs, respectively.

3.1 Model variables

In order to construct the model of type I and type III IFN signaling we refined model components
of the JAK-STAT signaling pathway available in the literature [S27, S28, S29, S30, S31]. Primarily,
based on the available models we have listed variables corresponding to the major biochemical species
involved in signaling. The list of model variables, together with initial values used in simulations, is
presented in Supplementary Table 1.
Initial values of the copy number of STAT1 and STAT2 proteins as well as both receptors complexes
respectively, were sampled as described in Section 3.4.
Phosphorylated STAT molecules reside in nucleus and are dephosphorylated in a stepwise process.
Dephosphorylation introduces a delay of nuclear export of phosphorylated STAT dimers [S32], which
in the model is represented by a chain of linear reactions [S27, S33, S34]. The number of STAT1/1 and

STAT1/2 dimers in the nucleus in the intermediate states are denotes as Y
(i)
1/1 and Y

(i)
1/2, respectively,

for i changing form 1 to 5. The total copy number of STAT1/1 and STAT1/2 in the nucleus is the
sum of intermediate, partly dephosphorylated forms

Y1/1 =
5∑
i=1

Y
(i)
1/1, Y1/2 =

5∑
i=1

Y
(i)
1/2.
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variable init. cond. unit description Reference
Y1 µ1 = 1000 [molecules] inactive type I receptor

[S19]
Y2 0 [molecules] active type I receptor
Y3 µ3 = 1000 [molecules] inactive type III receptor

[S19]
Y4 0 [molecules] active type III receptor
Y5 µ5 = 1.659 · 105 [molecules] STAT 1 in the cytoplasm [S33, S35]
Y6 µ6 = 1.659 · 105 [molecules] STAT 2 in the cytoplasm [S33, S35]
Y7 0 [molecules] phosphorylated STAT 1 in the cytoplasm Assumed
Y8 0 [molecules] phosphorylated STAT 2 in the cytoplasm Assumed
Y9 0 [molecules] p-STAT 1/1 in the cytoplasm Assumed
Y10 0 [molecules] p-STAT 1/2 in the cytoplasm Assumed

Y
(i)
1/1 0 [molecules] i-the intermediate form of p-STAT 1/1 in the nucleus (i = 1, ..., 5) Assumed

Y
(i)
1/2 0 [molecules] i-the intermediate form of p-STAT 1/2 in the nucleus (i = 1, ..., 5) Assumed

Y1/1 0 [molecules] total p-STAT 1/1 in the nucleus (Y1/1 =
∑5
i=1 Y

(i)
1/1) Assumed

Y1/2 0 [molecules] total p-STAT 1/2 in the nucleus (Y1/2 =
∑5
i=1 Y

(i)
1/2) Assumed

xα 0-5 [ng/ml] concentration of IFN-α [S36, S37]
xλ1 0-250 [ng/ml] concentration of IFN-λ1 [S36, S37]

Supplementary Table 1: Variables of the IFN signaling model and their initial conditions. The initial
copy number of STAT1 and STAT2 proteins as well as both receptors was
assumed to be random therefore their means, µi, are presented.
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3.2 Reactions and their rates

Similarly to the model variables, we have identified major reactions involved in type I and type III
IFN signaling based on the existing models [S27, S28, S29, S30, S31]. Below we list all model reactions
together with their rates. Reaction rates were formulated using mass action kinetics. Each arrow
represents a single reaction with substrates to the left, products to the right and rate over the arrow.

Receptor binding/unbinding

(Type I receptor – IFN-α binding) Y1
xαk

+
RI
Y1

−−−−−→ Y2

(Type I receptor – IFN-α unbinding) Y2
k−RI

Y2
−−−−→ Y1

(Type III receptor – IFN-λ1 binding) Y3
xλ1k

+
RIII

Y3
−−−−−−−→ Y4

(Type III receptor – IFN-λ1 unbinding) Y4
k−RIII

Y4
−−−−−→ Y3

STATs phosphorylation

(STAT1 phosphorylation) Y5
Y2k

RI
S1 Y5−−−−−→ Y7

Y5
Y4k

RIII
S1 Y5−−−−−−→ Y7

(STAT2 phosphorylation) Y6
Y2k

RI
S2 Y6−−−−−→ Y8

Y6
Y4k

RIII
S2 Y6−−−−−−→ Y8

phosphorylated STATs (pSTATs) dimerisation

(dimerisation p-STAT1/1)
Y7
Y7

kS1S1Y
2
7−−−−−→ Y9

(dimerisation p-STAT1/2)
Y7
Y8

kS1S2Y7Y8−−−−−−→ Y10

Homo- and heterodimers in the nucleus

(p-STAT1/1 cytoplasm - nucleus translocation) Y9
kN11Y9−−−−→ Y

(1)
1/1

(p-STAT1/2 cytoplasm - nucleus translocation) Y10
kN12Y10−−−−−→ Y

(1)
1/2

(p-STAT1/1 dephosphorylation) Y
(1)
1/1

kN11Y
(1)
1/1−−−−−−→ Y

(2)
1/1 . . . Y

(4)
1/1

kN11Y
(4)
1/1−−−−−−→ Y

(5)
1/1

(p-STAT1/2 dephosphorylation) Y
(1)
1/2

kN12Y
(1)
1/2−−−−−−→ Y

(2)
1/2 . . . Y

(4)
1/2

kN12Y
(4)
1/2−−−−−−→ Y

(5)
1/2

(p-STAT1/1 nucleus - cytoplasm translocation) Y
(5)
1/1

kC11Y
(5)
1/1−−−−−→ Y5

Y5

(p-STAT1/2 nucleus - cytoplasm translocation) Y
(5)
1/2

kC12Y
(5)
1/2−−−−−→ Y5

Y6
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3.3 Model parameters

Parameter values used in the simulations are presented in Supplementary Table 2. The majority of
the parameter values has been adapted from [S33, S35] and expressed in units corresponding to copy
numbers instead of concentrations assuming cytoplasmic and nuclear volume as in [S33, S35].
Parameters of receptor activation and deactivation were varied to examine possible, and currently
unknown, differences in kinetics of these receptors. Specifically, the rate of deactivation of type I
receptors, k−RI , was set, to reflect the time-frame of nuclear phosphorylated STATs activity reported
in the experimental data of [S37]. The rate of deactivation of type III receptors, was then dictated

by the coeffecient δ =
k−RIII
k−RI

. Furthermore, values of receptors’ Kd’s, K
I
d =

k−RI
k+RI

and KIII
d =

k−RIII
k+RIII

has been set to correspond to experimentally observed data [S37]. In consequence, rates of receptors’
activation k+RI and k+RIII , were determined by both Kd’s and deactivation rates k−RI and k−RIII .

parameter value unit description Reference

k−RI
0.78 [ 1

min. ] ligand unbinding rate of type I receptor Assumed, [S37]

k−RIII
variable [ 1

min. ] ligand unbinding rate of type III receptor Assumed

k+RI
variable [ 1

ng/ml·min. ] ligand binding rate of type I receptor Assumed

k+RIII
variable [ 1

ng/ml·min. ] ligand binding rate of type III receptor Assumed

KI
d = k−RI

/k+RI
0.5 [ ngml ] dissociation constant of the type I receptor [S19, S38]

KIII
d = k−RIII

/k+RIII
25 [ ngml ] dissociation constant of the type III receptor [S19, S38]

kRI

S1 0.0202 [ 1
molecules·min. ] STAT1 phosphorylation rate by type I receptor [S33, S35]

kRIII

S1 0.0202 [ 1
molecules·min. ] STAT1 phosphorylation rate by type III receptor [S33, S35]

kRI

S2 0.0202 [ 1
molecules·min. ] STAT2 phosphorylation rate by type I receptor [S33, S35]

kRIII

S2 0.0202 [ 1
molecules·min. ] STAT2 phosphorylation rate by type III receptor [S33, S35]

kS1S1 0.001362 [ 1
molecules·min. ] p-STAT1/1 dimerisation rate [S33, S35]

kS1S2 0.001362 [ 1
molecules·min. ] p-STAT1/2 dimerisation rate [S33, S35]

kN1/1 0.315537 [ 1
min. ] p-STAT1/1 nuclear translocation rate [S33, S35]

k1/1 2.640399 [ 1
min. ] p-STAT1/1 nuclear dephosphorylation rate [S33, S35]

kC1/1 2.640399 [ 1
min. ] p-STAT1/1 cytoplasmic translocation rate [S33, S35]

kN1/2 0.315537 [ 1
min. ] p-STAT1/2 nuclear translocation rate [S33, S35]

k1/2 2.640399 [ 1
min. ] p-STAT1/2 nuclear dephosphorylation rate [S33, S35]

kC1/2 2.640399 [ 1
min. ] p-STAT1/2 cytoplasmic translocation rate [S33, S35]

Supplementary Table 2: Parameters used in simulations of the IFN signaling model. Parameters of
receptor activation and deactivation were being varied to examine the impact
of differences in kinetics of these receptors on information capacity of the
pathway.

3.4 Modeling stochasticity

We have assumed that the stochasticity of the model arises from two sources: (i) stochasticity of all
individual reactions, and (ii) variability of total copy numbers of signaling proteins. Stochasticity of
individual reactions was modeled according to the Chemical Master Equation [S39] and for numer-
ical computations approximated by the Linear Noise Approximation within the StochSens Matlab
Package [S40]. Extrinsic noise was introduced as the variation of total copy number of STAT1 and
STAT2 proteins as well as both receptors complexes. Specifically, we assumed that the initial values
of variables Y1, Y3, Y5, Y6, which correspond to the copy number of STAT1 and STAT2 proteins as
well as both receptors complexes respectively, were random, with mean µi and standard deviation
σi for i ∈ {STAT1, STAT2, RI , RIII}. The framework of the StochSens package, similarly to the

Page 14



fluctuation-dissipation theorem, approximates any distribution of the initial copy number with the
normal distribution with unchanged mean and standard deviation. We assumed that the standard
deviations σi’s, relate to the means µi’s, through coefficient of variation,

σi = cv µi.

The coefficient of variation was varied as described in the main paper, whereas the means, µi’s, are
give in Supplementary Table 1.

3.5 Input and output

Calculation of the information capacity requires specification of the input and output. We have defined
the input-output relationship of the IFN signaling system as

(Input)
x = (xα, xλ1)

−→ (Output)
Y =

(
Y1/2(t1), . . . , Y1/2(tn), Y1/1(t1), . . . , Y1/1(tn)

) ,
where the input concentrations x = (xα, xλ1) define concentrations of a 30-minutes stimulation pulse
followed by the washout. Precisely, the concentrations of both IFNs over time, denoted as x(t) =
(xα(t), xλ1(t)) relate to the input values x = (xα, xλ1) in the following way

x(t) =

 (xα, xλ1)
[ ng
ml

]
for t ∈ [0, 30]

(0, 0)
[ ng
ml

]
for t > 30

.

We considered xα and xλ1 to vary from 0 to 5 and 250 ng/ml, respectively. The maximal values have
been selected to represent saturating doses according to [S37].

3.6 Numerical computations

The specification of the model described above allowed us to simulate model trajectories (Fig. 3 of the
main paper, Supplementary Figure 4 and Supplementary Figure 5) as well as to calculate the Fisher
information. Calculations were performed using the methodology described in [S41], which is based on
the Linear Noise Approximation of the Chemical Master Equation, and is implemented as the Matlab
package StochSens [S40]. In order to calculate C∗A according to the Eq. S.9 we simulated the model for
each point from a mesh composed of different combinations of IFNs concentrations, calculated FIMs
at those points, and evaluated the integral given in Eq. S.9.

3.7 Optimal input distributions

The channel capacity, C∗A, of IFN signaling is shown in the Fig. 4 of the main paper. The corresponding
two-dimensional optimal input distributions, P ∗JP (X), are depicted in Supplementary Figure 6 as
heatmaps.

3.7.1 Singular FIMs

Calculation of the information capacity C∗A according to the Eq. S.9 for multidimensional inputs
requires calculation of the determinant of FIMs. It is known that if a matrix is singular, the calculation
of its determinant can be numerically unstable. Therefore, to ensure accuracy of computations, we
considered FIM(x) to be singular a if its (L1-norm) condition number is larger than 103 and set
|FIM(X)| = 0 for these values of x. L1-norm condition number of a matrix A = {aij} is defined as
cond(A) = ‖A‖ · ‖A-1‖, where ‖A‖ = maxj

∑
i |aij |.
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3.8 Joint capacity of N cells, C∗N

As described in the main paper, our framework allows quantifying differences between information
transfer at the single cell and population levels.
Precisely, Eq. 8 of the main paper, describes the joint capacity of the N cells as the sum of the
asymptotic capacity, C∗A, and the factor dependent on the number of cells, 1/2 log2(N). Therefore, as

long as
∫
X |FIM(x)|

1
2dx > 0, or equivalently C∗A > −∞, the capacity of N cells, C∗N increases with

N . The same equation, as well as our numerical simulations of the Validity section, suggests that the
capacity of a single cell could be roughly approximated by C∗A alone.
As shown in Fig. 4 of the main paper, in the presence of high noise and similar receptor kinetics, C∗A
reaches negative values, e.g. for δ = 0.9 and cv = 1.5, C∗A ≈ −1. Obviously, in this case C∗A is not a
good approximation of C∗1 , as C∗N > 0 for all N . However, C∗A < 0 is indicative of low value of the
capacity of the single cell C∗1 , presumable lower than 2 bits.
In addition to the above heuristic interpretation, C∗A dictates the level of C∗N , for large N through
Eq. 8 of the main paper. This is illustrated in Supplementary Figure 7A that shows capacities C∗N as
a function of N for δ = 0.9 and cv = 1.5. The above argument demonstrates that even if the capacity
of a single cell is insufficient to distinguish the presence and absence of both IFNs, for a sufficiently
large population size a necessary discriminatory power can be obtained. In Supplementary Figure 7B
we show capacities C∗N for the highest considered similarity of the IFN receptors δ = 0.99 and all
considered noise levels. This further demonstrates that even with minor kinetic differences and high
noise levels, the capacity of cellular populations can be high.
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Supplementary Figure 4: Average trajectories of the copy number of nuclear p-STAT1/1 (Y1/1) and
of nuclear p-STAT1/2 (Y1/2) upon 30 minutes stimulation of either IFN-α
or IFN-λ1. Panels correspond to different values of the differential kinetics
coefficient, δ. Colours denote doses of IFN-α or IFNλ1. In the LNA frame-
work used for simulations, average trajectories are independent on the value
of the coefficient of variation, cv.
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Supplementary Figure 5: Trajectories of the copy number of nuclear p-STAT1/1 (Y1/1) and of nuclear
p-STAT1/2 (Y1/2) upon 30 minutes stimulation with an indicated concen-
tration of IFN-α and IFN-λ1. (A) Comparison of responses to stimulation
with intermediate (left column) and high (right column) doses both IFNs.
(B) Comparison of responses to increasing doses of IFN-α (left column) and
IFN-λ1 (right) column. Rows of each both panel correspond to different
values of the differential kinetics coefficient, δ. To ensure that trajectories
plotted for different parameter values can be distinguished we used cv = 0
for all simulations. Each panel contains 30 trajectories.
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4 Methods to calculate the Fisher Information

The FIM is defined as the average product of gradients of log-density, Eq. S.8. Calculation of the FIM
is crucial for computation of the asymptotic capacity, Eq. S.9. Therefore, below, we briefly discuss
available approaches to calculate FIM. Broadly speaking, these can be divided into three groups.

1. Using an explicit-formula. For several distributions an explicit formula describing FIM is avail-
able. Precisely, for simple distributions, P (Y |X = x), specifically one-dimensional, e.g. normal,
log-normal, exponential, etc., Eq. S.6 yields analytical expressions, which can be used to evaluate
Eq. S.9. Explicit formulae are also available in few multivariate scenarios [S42]. Linear noise
approximation, used to calculate FIMs of the interferon signaling model, leads to the multivariate
normal approximation of the output distribution, for which an explicit formula for the FIM is
available [S41].

2. Numerical evaluation of Eq. S.8. Numerical computation of log-density derivatives (or Hessian
matrix) and numerical integration of these log-densities provides a natural recipe for calculating
FIM. Our test example (biochemical sensor model) uses this approach. This method, however,
can be computationally problematic for high-dimensional distributions. Several computational
approaches are available to improve efficiency and accuracy of computations for high number
of dimensions (>10) [S43, S44, S45]. In addition, recently, a method to calculate the Fisher
information based on finite state projection has been proposed in [S46].

3. Non-parametric estimation. Since the FIM depends directly on the probability density function,
its estimation can be achieved through density estimation [S47]. A good estimate of FIM,
however, requires a good estimate of the density as well as of the derivative of log-density.
In addition to conventional kernel density estimators, alternative approaches were tested, e.g.,
[S48] found a unique interpolation of the cumulative distribution function that maximizes the
FIM, while [S49] adapted the maximized penalized likelihood method of [S50]. Other interesting
directions, including for multivariate scenarios, are discussed in [S49, S51, S52]. Besides, recently,
novel methods that calculate FIM directly from the data in an efficient way have been proposed
[S53, S54]. Nonetheless, the performance of the first one was shown only in 1- and 2-dimensional
case, while the other was tested in an elementary setting. Still, it would be interesting to merge
these methods with our approach to calculate channel capacity via Jeffrey’s prior rule.

In systems biology, stochastic models are often described by Chemical Master Equation and simulated
using Gillespie algorithm [S55]. Then FIM can be then obtained using extensive Monte Carlo algo-
rithms [S56, S57]. Here, we simulated the interferon signaling model using the LNA approximation.
For LNA, a closed-formula for the FIM exists and enables efficient computations as described in [S41]
and implemented as the Matlab package in [S40].

5 Computational efficiency of the algorithm

The algorithm to calculate the asymptotic capacity, C∗A, Eq. S.9, can be divided into four main steps:
1) construction of an input values grid ; 2) calculation FIM for each input value on the grid; 3)
integration according to the Eq. S.9. Therefore, its computational cost depends on three factors:

1. dimension of the input,

2. cost of calculating the FIM for each input value on the input grid,

3. cost of calculating the integral of Eq. S.9,
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Number of time points Time of computations

1 13 minutes
4 64 minutes
10 123 minutes
20 189 minutes

Supplementary Table 3: Computational time to obtain capacities presented in Figure 4A of the main
paper as function of the length of the output.

The computational cost can be simplistically represented as

qdx · (C1 + C2) ,

where q is the number of points in each dimension of the input grid, dx is the dimension of the input,
C1 is the cost of calculating FIM for each point on the input grid and C2 is the point cost of integration
Eq. S.9. Therefore, the computational cost is exponentially dependent on the dimension of the input.
However, the cost of calculating FIMs, itself, depends on the dimension of the input. Moreover, the
cost of calculating the FIM also depends on the dimension of the output and model complexity, i.e.,
the number of modelled variables, non-linearities, timescales, etc.. Given that cost of calculating
FIM depends on the specific method (see the previous section), it is hard to provide a general cost
calculation. Therefore, we provide practical computational times for the interferon signaling model.
The interferon signaling model involved over 20 biochemical species, 2-dimensional input, and up to
40-dimensional output. For the model, we measured computation times on a workstation with Intel R©

Xeon R© CPU E5-1650 v3 3.5GHz, 6 cores (12 logical units), 32 GB RAM DDR4 2133 MHz (Matlab’s
Parallel Computing Toolbox was used in simulations with 4 cores). Computation times for various
model setting of Figure 4A are reported in Supplementary Table 3.

6 Extensions to estimate information capacity from experimental data

Our framework aims at quantification of information capacity using models of signaling pathways
given by a probability distribution P (Y |X = x). The proposed approach could, however, be applied
in any scenario, in which the Fisher information is available. If experimental measurements provided
sufficient data to estimate Fisher information, the information capacity C∗A could be calculated within
our framework. This results from the fact that the Fisher information is enough to evaluate the integral
in Eq. S.9. Several methods have been recently proposed to estimate Fisher information directly from
experimental measurements (e.g. [S53, S54]). Hence the proposed methods could be further utilised
to quantify information capacity from experimental data.
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[S3] Gašper Tkačik, Curtis G Callan Jr, and William Bialek. Information capacity of genetic regula-
tory elements. Physical Review E, 78(1):011910, 2008.

[S4] Raymond Cheong, Alex Rhee, Chiaochun Joanne Wang, Ilya Nemenman, and Andre Levchenko.
Information transduction capacity of noisy biochemical signaling networks. Science, 334(6054):
354–358, 2011.

[S5] Susanne Schreiber, Christian K Machens, Andreas VM Herz, and Simon B Laughlin. Energy-
efficient coding with discrete stochastic events. Neural Computation, 14(6):1323–1346, 2002.

[S6] Vijay Balasubramanian, Don Kimber, and Michael J Berry II. Metabolically efficient information
processing. Neural Computation, 13(4):799–815, 2001.

[S7] Frédéric Dupuis, Wei Yu, and F Willems. Blahut-arimoto algorithms for computing channel
capacity and rate-distortion with side information. In IEEE International Symposium on Infor-
mation Theory, pages 179–179, 2004.

[S8] Jose M Bernardo. Reference posterior distributions for bayesian inference. Journal of the Royal
Statistical Society. Series B (Methodological), pages 113–147, 1979.

[S9] BS Clarke and AR Barron. Jeffreys’ prior is asymptotically least favorable under entropy risk.
Journal of Statistical Planning and Inference, 1994.
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putational models of the JAK1/2-STAT1 signaling. Jak-Stat, 2(3):e24672, 2013.

[S30] Jaroslaw Smieja, Mohammad Jamaluddin, Allan R Brasier, and Marek Kimmel. Model-based
analysis of interferon-β induced signaling pathway. Bioinformatics, 24(20):2363–2369, 2008.
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