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We investigate the kinetics of the ubiquitous phosphorylation–dephosphorylation cycle on biological
membranes by means of kinetic Monte Carlo simulations on the triangular lattice. We establish
the dependence of effective macroscopic reaction rate coefficients as well as the steady-state phos-
phorylated substrate fraction on the diffusion coefficient and concentrations of opposing enzymes:
kinases and phosphatases. In the limits of zero and infinite diffusion, the numerical results agree
with analytical predictions; these two limits give the lower and the upper bound for the macroscopic
rate coefficients, respectively. In the zero-diffusion limit, which is important in the analysis of dense
systems, phosphorylation and dephosphorylation reactions can convert only these substrates which
remain in contact with opposing enzymes. In the most studied regime of non-zero but small diffusion,
a contribution linearly proportional to the diffusion coefficient appears in the reaction rate. In this
regime, the presence of opposing enzymes creates inhomogeneities in the (de)phosphorylated sub-
strate distributions: the spatial correlation function shows that enzymes are surrounded by clouds
of converted substrates. This effect becomes important at low enzyme concentrations, substantially
lowering effective reaction rates. Effective reaction rates decrease with decreasing diffusion and
this dependence is more pronounced for the less abundant enzyme. Consequently, the steady-state
fraction of phosphorylated substrates can increase or decrease with diffusion, depending on relative
concentrations of both enzymes. Additionally, steady states are controlled by molecular crowders
which, mostly by lowering the effective diffusion of reactants, favor the more abundant enzyme.
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I. INTRODUCTION

Cellular information is transmitted and processed by
complex networks of coupled biochemical reactions. Dy-
namics of these networks is governed by reaction rates,
which are strongly influenced by diffusivity of reactants
[1], their subcellular localization, and non-specific molec-
ular crowding [2–4].

The aim of our study is to analyze the dependence of ef-
fective macroscopic reaction rate coefficients on diffusion
in cycles of coupled antagonistic reactions. Such cycles,
exemplified by the phosphorylation–dephosphorylation
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cycle or the GTPase cycle (Fig. 1), are crucial for cel-
lular signal transduction. In the ubiquitous motif of
the phosphorylation–dephosphorylation cycle, substrate
molecules are phosphorylated and dephosphorylated by
kinases and phosphatases, respectively. For example, in
the GTPase cycle [5], GTPases such as Ras exist in ei-
ther of two signaling states: GTP-bound Ras is active
(as it can recruit Raf and trigger MAPK kinase cascade
signaling), while GDP-bound Ras is inactive. GTPase-
activating proteins (GAPs) assist in the transition from
the GTP-bound to GDP-bound form, while guanine
nucleotide-exchange factors (GEFs) facilitate GDP dis-
sociation followed by reloading of Ras with GTP. Over-
all, reversible regulatory motifs allow for substrate reuse
and signal amplification, thus enabling rapid transmis-
sion of extracellular signals to effector proteins such as
transcription factors.

http://dx.doi.org/10.1103/PhysRevE.91.022702
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FIG. 1. (Color online) (a) A simple phosphorylation–
dephosphorylation cycle; Su – dephosphorylated substrate, Sp

– phosphorylated substrate. (b) Ras GTPase cycle; GEF –
guanine nucleotide-exchange factor, GAP – GTP-ase activat-
ing protein.

In this study we focus on chemical kinetics in two-
dimensional systems such as biological membranes. The
2-D systems have their own peculiarities and significantly
differ from 3-D systems, but are very important for sig-
nal transduction. Signal transduction in numerous path-
ways is initiated by cytokine binding to membrane re-
ceptors, which transmit signal to secondary messengers,
often by phosphorylation. Plasma membrane is a very
crowded and nonhomogenous environment where reac-
tions are expected to be diffusion-controlled. This dis-
tinguishes plasma membrane from the cytoplasm, which
is characterized by at least one order of magnitude faster
diffusion, and in which the characteristic reaction time
scale is longer.

Since the seminal work of von Smoluchowski on ki-
netics of diffusion-limited association [6], there have
been numerous attempts to derive effective macroscopic
reaction rate coefficients (EMRRCs) that govern pro-
cesses in a macroscale chemical reactor. These deriva-
tions were based mostly on microscopic models having
a single-molecule resolution, continuous in space and
time. Halfway between, the system can be described by
means of reaction–diffusion master equation, referred to
as mesoscopic, as it averages out the kinetics over the
microscopic length and time scales [7, 8]. We will ap-
proach the microscopic limit by means of on-lattice ki-
netic Monte Carlo simulations, assuming that each lattice
site can be either occupied by one molecule or empty.
This approach, in contrast to mesoscopic description-
based simulation methods, provides us with the single-
molecule and single-reaction resolution, but simplifies the
continuous space to a discretized lattice.

Reaction schemes studied thus far can be divided into
reversible and irreversible. For the reversible case, even
in equilibrium, reactions still take place and the steady
state may be non-trivial. For the irreversible case, the
system converges in most cases to a well-defined state in
which all reactions cease; but the determination of time-
dependent behavior still remains a challenging problem.
Irreversible reaction systems:

• A + B → C. Collins and Kimball [1] determined
the time-dependent reaction rate in the case when
only a fraction of collisions leads to dimer formation

(extending the study of von Somoluchowski [6]) and
analyzed two limits corresponding to diffusion con-
trol and reaction (activation energy) control. Fur-
ther works by Naqvi [9], Emais and Fehder [10],
Torney and McConnel [11] showed essential differ-
ences between 2- and 3-dimensional systems. In
three dimensions, the reaction rate “quickly” stabi-
lizes at some positive value, while in two dimensions
it decreases to zero as 1/ ln(t) [11]. A very similar
reaction, A+ B → ∅, was considered by Toussaint
and Wilczek in the context of particle–antiparticle
annihilation [12] (see also [13]).

• A+B → A+C and A+B → AB → A+C. Szabo
considered this unidirectional reaction in the con-
text of fluorescent quenching, where A is a quencher
and B (C) are in excited (relaxed) states [14]. By
employing various approaches, including that of
von Smoluchowski, mean field, mean first-passage
time, he calculated the reaction rate to find that
the agreement between these approaches is satis-
factory only in the limit of small concentration and
fast diffusion. For the Michaelis–Menten scheme,
A + B ⇀↽ AB → A + C, Kim et al. found that
the long-time asymptotic relaxation of the devia-
tion of the bound enzyme concentration from the
steady-state value shows the power-law behavior
∝ (Dt)−1/2, where D is the diffusion coefficient
[15]. The same scheme has been analyzed by Park
and Agmon [16, 17]. In the latter work, Park and
Agmon determined substrate concentration profiles
developing near a static enzyme molecule. Also
Zhou developed theoretical approaches and per-
formed simulations to quantify the diffusion influ-
ence on binding/unbinding rates [18].

Reversible reaction systems:

• A + B ⇀↽ C. Classical mass-action theory in
the limit of infinite diffusion predicts exponen-
tial relaxation to the steady state. For diffusion-
influenced kinetics, Zel’dovich and Ovchinnikov
showed that the system follows power-law relax-
ation ∝ (Dt)−3/2 in 3D [19]. Then, Berg calcu-
lated the diffusion-controlled dissociation constant
[20], later Agmon and Szabo determined the time-
dependent kinetics for the fraction of dissociated
A and B molecules for various initial and bound-
ary conditions [21, 22]. Szabo discussed three dif-
ferent approaches to the relaxation kinetics of the
reversible association reactions that lead to non-
exponential relaxation in the diffusion-limited case
[22]. Sung and Lee provided an accurate theory
of the diffusion-influenced reversible association re-
actions [23] which is in agreement with numeri-
cal results of Edelstein and Agmon [24] and cor-
rectly reduces to the von Smoluchowski’s result in
the irreversible limit. Takahashi et al. [25] con-
sidered a more complex double phosphorylation–
dephosphorylation cycle based on this simple re-
action scheme. They found that substrate rebind-
ings, which arise more likely for slow diffusion, turn
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a distributive phosphorylation mechanism into a
processive one leading to the loss of ultrasensitiv-
ity in the MAPK cascade. Processive phosphory-
lation is the mechanism of double phosphorylation
happening at a single enzyme–substrate encounter.
This phosphorylation mode is favoured in the case
of slow diffusion. In the distributive phosphory-
lation mechanism, occurring more likely for faster
diffusions, the subsequent phosphorylations happen
at different enzyme–substrate collisions and may
be performed by different enzyme molecules. Re-
cently, substrate rebinding was considered by van
Zon et al., who found that repressor–promoter re-
bindings slow down gene switching and therefore in-
crease gene expression noise [26]. In the context of
T-cell receptor (TCR) activation it was found that
fast TCR–pMHC rebindings of shortly-bound lig-
ands can allow for kinetic proofreading-based TCR
activation similar to that induced by ligands which
bind for longer times [27].

• A + B ⇀↽ C + D. In a series of papers, Ag-
mon and colleagues obtained analytical solutions
for the Green function and survival probabilities
of the reversible reaction. They found that the
asymptotic state (in three dimensions) is reached
as (Dt)−1/2, as in the irreversible case [28–30]. Re-
cently, for the reversible Michaelis–Menten scheme,
A + B ⇀↽ AB ⇀↽ A + C, Szabo and Zhou cal-
culated the steady-state reaction rates in the case
when substrate and product concentrations are ef-
fectively fixed, so that bimolecular reactions can
be treated as pseudo-first order [31]. They found
that, similarly to the irreversible Michaelis–Menten
kinetics, the relaxation of free- and bound-enzyme
concentrations to steady state follows the power law
∝ (Dt)−1/2.

The molecular crowding effect was studied and dis-
cussed in a considerable number of papers and reviews
[2–4]. To-date results state that crowding, acting through
volume exclusion, influences the reactions rates differ-
ently in different regimes. In the diffusion-controlled
regime it decreases the effective rate coefficients, whereas
it increases them in the reaction-controlled regime. Also,
it creates microdomains that can transiently cage sub-
strates or enzymes [3, 32–34]. In particular, it was shown
experimentally and analyzed theoretically that substrate
caging can change the distributive phosphorylation mode
into the processive one [35]. Recently, it was shown by
Weiss that molecular crowding renders fluids viscoelas-
tic, which in turn leads to subdiffusion of tracer particles
[36].

In this work we investigate the phosphorylation–
dephosphorylation cycle consisting of two opposing re-
actions: K + Su → K + Sp,P + Sp → P + Su, and analyze
how the EMRRCs and steady states depend on the dif-
fusion and concentrations of enzymes (kinases, K, and
phosphatases, P). In the considered model, the nonuni-
formity in spatial distribution of phosphorylated and de-
phosphorylated substrates is inherent to the system. At

small densities of enzymes, each enzyme molecule is sur-
rounded by a cloud of converted substrates. Since the
scale of nonuniformity is controlled simultaneously by
both enzymes, the effective phosphorylation and dephos-
phorylation rate coefficients are expected to be coupled.

The paper is organized as follows: in Section II we de-
fine our models and outline the methods used for numeri-
cal analysis; in Section III we provide analytical solutions
for limiting cases; in Section IV we present numerical re-
sults and highlight interesting effects; discussion follows
in Section V.

The paper is supplemented with four appendices: in
Appendix A we show that EMRRCs are independent of
the lattice size for sufficiently large lattices; in Appendix
B we analyze the dependence of macroscopic diffusion
on motility and density of molecules; in Appendix C we
analyze non-equilibrium dynamics of the system of two
opposing reactions (i.e., the basic model) and the system
without the dephosphorylation reaction; in Appendix D
we consider a model variant in which phosphorylation
and dephosphorylation proceed via formation of a tran-
sient enzyme–substrate complex.

II. MODELS AND METHODS

A. Numerical methods

All of the considered models introduced hereafter are
analyzed by means of spatial kinetic Monte Carlo (KMC)
simulations [37, 38]. Molecules are placed on discrete
sites of a 2-dimensional triangular lattice which forms a
square domain with periodic boundary conditions. The
molecules diffuse freely by hopping to adjacent empty
lattice sites. Their state can be modified due to chemi-
cal reactions, either unimolecular or bimolecular (involv-
ing two molecules occupying adjacent lattice sites). Dif-
fusion and reaction events occur at defined rates called
motilities and (microscopic) reaction rate constants, re-
spectively. Motilities, m, are assumed to be equal for
molecules of all types (unless otherwise specified). The
propensity of hopping to a neighboring empty site on the
triangular lattice is m/6. All allowed chemical reactions
are defined together with their respective reaction rate
constants.

At each step of the KMC simulation, a list of all events
possible on the lattice is available. Time-step is drawn at
random from the exponential distribution with the rate
parameter equal to the sum of the rates of all possible
events. A diffusion or reaction event is selected from
the complete events list at random, with probability pro-
portional to its rate. This approach is equivalent to a
stochastic simulation according to the Gillespie algorithm
[39] extended to account for additional diffusive events.
Such construction allows for direct comparison of motil-
ity with reaction rate constants. After every event, the
list of all events is updated. However, since the change
in the system configuration after every simulation step
is local, only a partial update of the list is necessary.
By drawing events from the always-complete list, there
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is no need to simulate trial events that would be sub-
sequently rejected, rendering the method efficient. The
overall algorithm is essentially equivalent to the Bortz–
Kalos–Lebowitz (BKL) method applied previously to,
e.g., studying dynamics of Ising spin glasses [40].

Initial distribution of molecules on the lattice is uni-
formly random. Simulations were performed on the
100 × 100 lattice to estimate EMRRCs in equilibrium;
in the non-equilibrium case, the 300 × 300 lattice was
used in order to obtain better statistics, while the spatial
correlation functions were determined based on simula-
tions performed on the 500 × 500 lattice. As shown in
Appendix A, simulations performed on lattices of sizes
equal or larger than 30× 30 with a number of molecules
of each type exceeding 50, give the EMRRCs estimates
independent of the lattice size. EMRRCs in equilibrium
were determined by averaging over 10 independent, long-
run simulations of the system in equilibrium (assessed
by invariance of non-trivial radial distribution functions
or correlation length-based considerations [41]). Unless
stated otherwise, the simulations were preceded by equi-
libration phase of 1000 and lasted at least 1000 each.
In the non-equilibrium case we performed 1000 indepen-
dent simulations to obtain satisfactory statistics (see Ap-
pendix C for further details).

Numerical results are supplemented by analytical ex-
pressions obtained in two extreme cases of zero and infi-
nite motility. We also analyze how the steady states and
effective motilities are influenced by non-specific molec-
ular crowders of varying motilities.

B. Phosphorylation–dephosphorylation cycle

We consider a phosphorylation–dephosphorylation cy-
cle assuming that these processes are unidirectional re-
actions, occurring at their respective rates; the free en-
ergy expenditure featuring reaction cycles is neglected.
Substrates are phosphorylated and dephosphorylated by
kinases and phosphatases according to the following set
of reactions:

K + Su
c−→ K + Sp, (1a)

P + Sp
d−→ P + Su, (1b)

where Su and Sp stand for dephosphorylated and phos-
phorylated substrates, respectively, K represents the ki-
nase and P – the phosphatase. The symbols ρK, ρP,
ρSu , and ρSp will denote surface densities, i.e., the frac-
tions of lattice sites occupied by respective molecules.
Coefficients c and d are the microscopic rate constants
of phosphorylation and dephosphorylation reactions cat-
alyzed by adjacent enzymes. In other words, c and d
are propensities of respective reactions when an enzyme
molecule is in contact with a substrate molecule. Equa-
tions (1) should not be read as exact chemical balance
equations; instead, they conform to an approximation in
which the concentration and diffusion coefficient of ATP
(phosphate donor) are sufficient to assume that ATP ac-
cessibility does not limit the phosphorylation reaction

rate. Also the inorganic phosphate molecules produced in
dephosphorylation reactions are not taken into account.

As a reference to the basic model defined by Eqs. (1) we
also consider a model variant in which dephosphorylation
is a first-order reaction, i.e.,

Sp
d0−→ Su, (2)

whereas phosphorylation still occurs via Eq. (1a). The
first-order dephosphorylation (FOD) reaction is a simpli-
fication but it serves as an approximation when a partic-
ular phosphatase or its level are unknown. In order to
compare FOD approximation with the basic model, we
set d0 = 6ρPd, which assures equal dephosphorylation ef-
ficiencies in the limit of infinite motility, as will be shown
later.

The basic model does not account explicitly for the
formation of the enzymatic encounter complex: both the
phosphorylation and dephosphorylation are considered
to be single-step reactions. In reality, these reactions
are multi-step processes (enzyme–substrate binding, cat-
alytic reaction, and enzyme–product dissociation). As
shown in the Appendix D, this simplification does not
significantly affect our key findings, at least when the
enzyme sequestration is weak.

C. Macroscopic description and effective reaction
rate coefficients

Time evolution of systems of reacting molecules is usu-
ally described by chemical mass-action kinetics equa-
tions, i.e., systems of ordinary differential equations for
densities of substrates and products. Here, we take into
account spatial and discrete nature of biochemical reac-
tions and simulate numerically processes involving indi-
vidual molecules. Our aim is to determine—based on
the microscopic rate constants c and d—the effective re-
action rate coefficients, which can be then used in the
macroscopic description of the system.

We define the effective macroscopic phosphorylation
rate coefficient ceff and effective macroscopic dephospho-
rylation rate coefficient deff accordingly:

ceff =
n

ρSu
ρKV∆t

, (3a)

deff =
n

ρSp
ρPV∆t

(3b)

and refer to them collectively as to (EMRRCs). In
Eqs. (3), n is the number of (de)phosphorylation reac-
tions that fired during a time interval ∆t and V is the
lattice surface area (i.e., total number of lattice sites).
The densities of kinases, phosphatases and substrates are
denoted by ρ with a respective subscript: ρK, ρP, ρSu

,
and ρSp

.
For the most part in our study, we will focus on

the steady state analysis where EMRRCs can be es-
timated based on long-run simulations, in which the
number of reactions is determined over a satisfactorily
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long time interval ∆t. Only in Appendix C will we
perform simulations for the system which is initially
far from equilibrium, to show that for the reversible
phosphorylation–dephosphorylation cycle EMRRCs con-
verge to their steady states. In this case we will estimate
EMRRCs within short time intervals by averaging over
1000 independent KMC simulations.

When the number of molecules present in the system
is large we can write the following system of ordinary
differential equations:

d
dtρSu = −ceffρKρSu + deffρPρSp , (4a)
d
dtρSp = ceffρKρSu − deffρPρSp . (4b)

These two equations are complementary, since their so-
lutions satisfy ρSu

(t) + ρSp
(t) = ρS = const. The steady-

state solution of Eqs. (4) reads:

ρSu
=

deffρP

ceffρK + deffρP
ρS, (5a)

ρSp =
ceffρK

ceffρK + deffρP
ρS. (5b)

In the next section we will analyze the dependence of the
steady-state solutions and EMRRCs on motility. EMR-
RCs provide more information than steady-states alone;
for example, they give the ATP turnover which can be
measured by radioactively labeled ATP (γ-32P-ATP).
First, we will provide analytical results in the limits of
zero and infinite motility. Then, we will analyze numeri-
cally our model for finite, non-zero motilities.

III. ANALYTICAL RESULTS

A. Infinite-motility limit

We assume that in the infinite-motility limit the prob-
ability of finding a given molecule is uniform on the
lattice. Thus, at any time the density of enzyme–
substrate pairs is given by the product of densities mul-
tiplied by the number of potential neighbors, e.g. the
kinase–dephosphorylated substrate pair density is equal
to 6ρKρSu

. Therefore, the phosphorylation rate is equal
to 6cρKρSu

, which in light of Eq. (4) gives c∞eff = 6c. The
limit of infinite motility will be compared later with sim-
ulations performed for high motilities.

B. Zero-motility limit

The zero-motility limit is a singular limit, since without
mixing the whole process is determined by initial posi-
tions of enzymes and substrates. For an arbitrarily small
motility, however, the system relaxes after a sufficiently
long time.

The zero-motility limit approximates the behavior of
dense systems, in which diffusion is substantially reduced,
but reactions still occur for substrates in the close vicin-
ity of opposing enzymes. Increased density, together with

reduced diffusion, features receptor clusterization, nec-
essary for example for the initiation of B-cell receptor
signaling [42–45] and TLR4–CD14 cluster formation pre-
ceding receptors internalization [46]. Formation of dense
ordered patterns of proteins and other molecules has been
intensively modeled in recent years (see Ref. [47] and ref-
erences therein).

We start the analysis of this limit by calculating the
steady-state densities of phosphorylated and dephospho-
rylated substrates, ρSp

and ρSu
:

ρSp
= p+ · ρS, ρSu

= ρS − ρSp
, (6)

where p+ is the probability that a substrate molecule is
in the phosphorylated state.

When the motility is zero, the probability that a given
substrate molecule is phosphorylated depends solely on
the number of neighboring kinases, i, and the number of
neighboring phosphatases, j, and is equal to

p+
ij =

ic

ic+ jd
. (7)

The probability of having exactly i kinase and j phos-
phatase neighbors is

pij =

(
6

i

)
ρiK

(
6− i
j

)
ρjP (1− ρK − ρP)6−i−j (8)

where

i, j ∈ {0, 1, . . . , 6}, 1 ≤ i+ j ≤ 6,

and the probability that the substrate is in the phospho-
rylated state without contact with any enzyme molecule
is equal to the probability that the substrate is in the
phosphorylated state while in contact with at least one
enzyme molecule. The Eq. 8 is exact only on infinite do-
mains with infinite number of kinases and phosphatases,
however it serves as a good approximation when the
number of enzymes of each type is much larger than
one. The infinitely small but non-zero motility means
that substrates equilibrated in contact with the enzyme
diffuse away maintaining their phosphorylation status
which cannot change without a subsequent contact with
an appropriate enzyme molecule.

Therefore, the probability p+ is given by the condi-
tional probability that a substrate molecule is phosphory-
lated when in contact with at least one enzyme molecule,

p+ =
∑

1≤i+j≤6

pijp
+
ij

/ ∑
1≤i+j≤6

pij , (9)

where the sum runs over all substrate molecules having
contact with at least one enzyme molecule.

Now, we will calculate EMRRCs in the steady state.
Let us notice that in the zero-motility limit reactions oc-
cur only for the substrate molecules which have neigh-
bors of different types (i.e., at least one kinase and one
phosphatase). Let us recall that the probability that the
substrate which has i neighboring kinases and j neigh-
boring phosphatases is dephosphorylated is jd/(ic+ jd).
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The phosphorylation propensity is ic for the unphospho-
rylated substrate and it is 0 for the phosphorylated sub-
strate. Thus the effective phosphorylation propensity is
ic · jd/(ic + jd). In the stationary state the number of
the phosphorylation and dephosphorylation reactions per
reactor volume per time must be equal, and thus the reac-
tion rates are equal to ρS

∑
i,j≥1,i+j≤6 pij(ic jd)/(ic+jd)

and, correspondingly, the effective phosphorylation and
dephosphorylation rate coefficients are equal to

c0eff =
ρS

ρKρSu

∑
i,j≥1
i+j≤6

pij
ic jd

ic+ jd
, (10a)

d0
eff =

ρS

ρPρSp

∑
i,j≥1
i+j≤6

pij
ic jd

ic+ jd
, (10b)

where ρS/ρSu
= 1/(1− p+) and ρS/ρSp

= 1/p+, with p+

given by Eq. (9).
One should keep in mind that rate coefficients c0eff

and d0
eff were derived under the steady-state assump-

tion and, therefore, far from equilibrium their values can
be substantially different. The phosphorylation and de-
phosphorylation rate coefficients obtained in the limit
of zero motility give the lower bounds for EMRRCs.
In the limit of ρK → 0 and ρP → 0, Eq. (8) implies
pij ≈ p11 = 30ρKρP (the probability of having more than
one enzyme of each kind is negligibly small, so pij = 0
for i, j > 1) and therefore in this limit c0eff and d0

eff are:

c0eff =
30

1− p+
ρP

cd

c+ d
, (11a)

d0
eff =

30

p+
ρK

cd

c+ d
. (11b)

Constants c0eff and d0
eff can be large in systems character-

ized by high densities of both kinases and phosphatases;
however, according to Eqs. (11), they decrease to zero
with the density of the opposing enzyme decreasing to
zero.

C. Finite motility

We have analyzed two extreme cases of zero and infi-
nite motility. In the infinite motility limit, also known
as the reaction-controlled limit, the EMRRCs are pro-
portional to the microscopic reaction propensities (for
molecules in contact). In this limit, since m � c and
m � d, the probability that an enzyme reacts with a
substrate at a single encounter is negligibly small and
proportional to the microscopic rate constants c and d.

The small motility limit arises when the microscopic
reaction rate constants c and d are fast when compared
to motility. Processes characterized by low motility and
large reaction propensities are called diffusion-limited.
For such processes the probability that an allowed re-
action fires at every collision of molecules is close to 1.
Therefore, for such processes EMRRCs are proportional
to the collision frequency, which in turn is proportional
to the motility m. Here, the situation is more complex

since even in the limit of zero motility the reaction rates
are nonzero, as discussed in the previous section. Accord-
ingly, one could expect the following macroscopic equa-
tion:

d
dtρSp = (λm+ c0eff) ρK ρSu − (λm+ d0

eff) ρP ρSp , (12)

where λ is some coefficient. In fact, the considered case
is even more complicated, since, especially at low enzyme
densities, the spatial distribution of the phosphorylated
and dephosphorylated substrates is nonuniform. That is,
the phosphorylated substrate molecules are more likely
to be present in the vicinity of a kinase, while the de-
phosphorylated substrate molecules—in the vicinity of a
phosphatase. As a result, even in the symmetric case
of c = d and ρK = ρP, in which the overall probability
that a substrate is phosphorylated is 1

2 , kinase molecules
collide much more often with phosphorylated substrates,
which reduces the effective phosphorylation rate. Intu-
itively, this effect increases with decreasing density of en-
zymes which causes that each phosphatase molecule is
surrounded by a cloud of dephospshorylated substrates
and each kinase molecule by a cloud of phosphorylated
substrates. We will analyze this effect in Sec. IV B by
means of spatial correlation function.

As we will show below, in the general case of finite
motility, EMRRCs are controlled simultaneously by the
motility, both contact reaction propensities, and densities
of both enzymes. Therefore, analytical determination of
these rate coefficients is a challenging problem.

IV. NUMERICAL RESULTS

A. Steady state dependence on enzyme density
and motility

In this section we analyze numerically the dependence
of the steady-state density of phosphorylated and de-
phosporylated substrates and EMRRCs on motility and
densities of the opposing enzymes. The convergence of
EMRRCs to their steady state in the phosphorylation–
dephosphorylation cycle is demonstrated in Appendix C.
In the same appendix the non-reversible dynamics of
phosphorylation in the absence of phosphatase is con-
sidered.

Let us recall that in the infinite-motility limit the effec-
tive macroscopic phosphorylation and dephosphorylation
rate coefficients are: c∞eff = 6c and d∞eff = 6d, and corre-
spondingly (due to Eq. (5)) the density of phosphorylated
substrates is

ρSp
=

cρK

cρK + dρP
ρS. (13)

To keep the steady-state densities of phosphorylated and
dephosphorylated substrates equal to 1

2 in the limit of the
infinite motility, we keep cρK = const and dρP = const,
that is, we set c = 1/6ρK and d = 1/6ρP. We found that
for finite motilities the phosphorylated substrate fraction
increases with ρK/ρP (in the analysis we keep ρK = 0.1
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FIG. 2. (Color online) (a) Fractional density of phosphorylated substrates, ρSp/ρS, as a function of the enzymes density ratio
for different values of motility, m. Analytically computed limits of zero and infinite motility are marked with dashed and dotted
lines. Parameters are: ρS = 0.3, ρK = 0.1, c = 1/6ρK, d = 1/6ρP. In this series of simulations, the density of kinases was kept
constant, while the density of phosphatases was varied from ρP = ρK/0.25 = 0.4 to ρP = ρK/12 ≈ 0.008. By setting d = 1/6ρP,
the change of phosphatases density was compensated by the proportional change of the microscopic dephosphorylation rate
constant. (b) Fractional density of phosphorylated substrates as a function of m, in the case when the more abundant enzyme
(kinase) has much lower catalytic activity. Simulations were performed for ρS = 0.3, ρK = 0.1, ρP = 0.01, c = 1, d = 100.
(c) Fractional density of phosphorylated substrate as a function of m for different values of phosphatase density ρP as well as
for the first-order dephosphorylation model marked as FOD, with d0 = 1. Simulations were performed for ρS = 0.2, ρK = 0.1,
c = 1/6ρK, d = 1/6ρP.

and vary ρP), and we show that the smaller the motility
is, the more pronounced this effect is, see Fig. 2(a). The
dashed line for m = 0 tends to 1 with ρK/ρP tending to
infinity. For low motility, m = 1, the numerically esti-
mated ρSp

matches closely the zero-motility limit. Sim-
ilarly, for large motilities, ρSp

is close to the infinite-
motility limit. Because of the symmetry, for ρK = ρP

the phosphorylated substrate fraction is equal to 1
2 for

all motilities.

In Fig. 2(b) we show that when kinases are more
abundant than phosphatases, but at the same time have
much lower catalytic activity, the dependence of ρSp

/ρS

on motility is strongly pronounced. At low motilities,
substrates remain mostly in the phosphorylated state,
ρSp

/ρS ≈ 0.9, while at high motilities they are mostly
dephosphorylated, ρSp

/ρS ≈ 0.1. The above shows that,
generically, in the regime of low motilities (diffusion-
limited) it is the density of enzymes that decides about
the state of the system and for large motilities (reaction-
controlled limit) crucial is the product of the microscopic
reaction rate constants and densities.

In Fig. 2(c) we show that the density of phosphorylated
substrate can either decrease or increase with motility
depending on the enzyme densities ratio. For a fixed
density of kinases (ρK = 0.1) we analyze the depen-
dence of ρSp on motility for four values of phosphatase
densities, as well as for the FOD model. Since, as in
Fig. 2(a), phosphatase microscopic reaction rate constant
is set d = 1/6ρP, for increasing motility, ρSp/ρS tends to
1
2 , regardless of the phosphatase density. However, for

small motilities ρSp
/ρS depends strongly on the phos-

phatase density, and in general differs from that for the
FOD model. Only for a very high density (ρP = 0.3)
does the fraction ρSp

/ρS closely match the FOD model
prediction with d0 = 1. This is due to the fact that for
ρP = 0.3 the probability that a given substrate molecule
is in contact with at least one phosphatase is high (equal
to 1−(0.7)6 = 0.88) and therefore the dephosphorylation
is effectively of first order. This demonstrates that the
FOD model cannot serve as a good approximation across
a broad range of motilities.

B. Spatial correlation functions

The results shown in Fig. 2 can be explained as follows:
for a decreased phosphatase density (compensated by a
proportionally increased dephosphorylation rate constant
d), phosphatases are surrounded by dephosphorylated
substrates and therefore the effective dephosphorylation
rate coefficient decreases. Intuitively, this effect becomes
stronger for low motilities, for which substrates have a
higher chance to be dephosphorylated after a single en-
counter with a phosphatase and vanishes in the limit of
infinite motility, when the probability that a substrate
molecule is in the phosphorylated state does not depend
on its position. It is well known that the rate of diffusion
controls the steady state of the system in the case when
opposing enzymes are spatially separated. As shown and
discussed by Brown and Kholodenko, when substrate
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FIG. 3. (Color online) Three simulation snapshots of the 300× 300 lattice showing spatial inhomogeneities of the distribution
of the phosphorylated (red) and dephosphorylated (blue) substrates. For all panels c = d = 100, ρS = 0.1, ρK = ρP = 0.001.
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FIG. 4. (Color online) Spatial correlation functions. (a) Spatial correlation function between kinases and phosphorylated
substrates fK,Sp(r)/ρS for motility m = 100 and three enzyme densities. (b) fK,Sp(r)/ρS for fixed enzyme densities ρK = ρP =
0.001 and six motilities m. (c) Spatial autocorrelation function for phosphorylated substrates fSp,Sp(r)/ρS. For all panels
c = d = 100 and ρS = 0.1. Results shown come from averaging over 250 snapshots from independent numerical simulations on
the 500× 500 lattice.

phosphorylation occurs at the plasma membrane and de-
phosphorylation occurs in the cytoplasm, gradients of
phosphorylated substrates arise, and the effectiveness of
the phosphorylation process depends on diffusion [48, 49].
Later, van Albada and ten Wolde demonstrated that the
sharpness of the response decreases with the spatial sep-
aration of opposing enzymes [50]. It was also found that
although clustering reduces signal for linear reaction ki-
netics, it can dramatically increase signal strength in the
cases when substrates require double modification [51]
or there exists a positive feedback between enzymes and
substrates [42, 52].

Here, the spatial separation of enzymes is not im-
posed but results from the discreteness of the mat-
ter. Park and Agmon found time-dependent concen-
tration profiles of unconverted substrate around a soli-
tary non-moving enzyme molecule for the Michaelis–
Menten scheme [17]. The effect of formation of inho-

mogeneities is visualized in Fig. 3 for three different
motilities, m ∈ {10, 1000, 10 000}. For small motili-
ties clouds of phosphorylated and dephosphorylated sub-
strates are clearly visible, whereas for larger motilities
the spatial distribution of phosphorylated and dephos-
phorylated substrates is nearly uniform. This effect is
quantified in Fig. 4 where the normalized spatial correla-
tion functions between kinases and phosphorylated sub-
strates, fK,Sp

(r)/ρS, and between phosphorylated sub-
strates, fSp,Sp

(r)/ρS, are plotted (r being the distance).
Function fK,Sp

(r)/ρS is calculated based on 250 snap-
shots from independent numerical simulations on the
500 × 500 lattice, long enough to reach the equilibrium
distribution. From each snapshot, fK,Sp

(r) is calculated
as 1

NK

∑
KNSp(r)/N(r), where NK is the number of ki-

nase molecules on the lattice, NSp(r) is the number of
phosphorylated substrates at the distance between r and
r + ∆r from a given kinase, and N(r) is the number
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of lattice sites at the distance between r and r + ∆r.
Then fK,Sp

(r) is averaged over all snapshots. Function
fSp,Sp

(r)/ρS is calculated analogously (i.e., the sum is
over all pairs of phosphorylated substrate molecules).

As one could expect, the correlation length, as well
as the amplitude of the correlation function fK,Sp

, in-
crease with decreasing enzyme density, Fig. 4(a). Cor-
relation length is of the order of the average distance
between enzymes 1/

√
ρK = 1/

√
ρP. For small motilities

fK,Sp
(1)/ρS ≈ 1, i.e., substrates adjacent to kinase are

phosphorylated with probability close to 1. The fSp,Sp
(r)

correlation function is smaller but the correlation length
is longer. The fSp,Sp

(r)/ρS function may not reach 1
even for the smallest m, since phosphorylated substrates
that are at the borders of clouds are in the close vicinity
of dephosphorylated ones. The larger correlation length
of fSp,Sp(r) can result from fluctuations in kinase dis-
tribution. They can cause formation of transient, large
“superclouds” of phosphorylated substrates surrounding
several kinases. These clouds contribute to long-range
correlation between phosphorylated substrates.

C. Effective macroscopic reaction rate coefficients

In this section we estimate EMRRCs on the basis of
long-run numerical simulations. As it was already dis-
cussed in Models and Methods, ceff can be estimated ac-
cording to Eq. (3). In Fig. 5 we show ceff/c

∞
eff for three

values of dephosphorylation rate constant d, as well as
for the FOD model with d0 = 1.

Effective macroscopic phosphorylation rate, ceff , in-
creases with reagents’ motility and this effect is more vis-
ible for small dephosphorylation reaction rate constant d.
This shows that the phosphorylation kinetics is strongly
coupled with the dephosphorylation kinetics and there-
fore the effective macroscopic phosphorylation and de-
phosphorylation reaction rates cannot be estimated sep-
arately. Figure 5 shows that ceff is a function of ρK,
ρP, c, d, and m. The dependence of ceff on motility is
the strongest at the smallest considered enzyme densi-
ties, ρK = ρP = 0.01, see Fig. 5(c), and the weakest
for the highest considered densities, ρK = ρP = 0.2, see
Fig. 5(a), where c0eff/c

∞
eff is large. This, consistently with

Fig. 2, is due to the fact that at high enzyme densi-
ties, substrates are constantly in contact with both ki-
nases and phosphatases, and thus the phosphorylation
and dephosphorylation reactions can occur almost inde-
pendently of the diffusion. As shown for ρK = ρP = 0.2
and ρK = ρP = 0.05, Fig. 5(a,b), numerically estimated
ceff for m = 0.1 matches well the analytically calculated
limit of c0eff ; for ρK = ρP = 0.01, Fig. 5(c), the agreement
is worse since the convergence of ceff(m) to c0eff is slower.

We will now analyze these effects in the limit when
phosphorylation is a diffusion-driven process. As dis-
cussed above, such a limit can be achieved when
diffusion-independent reactions are very infrequent com-
pared to those driven by diffusion, i.e., when:

c0eff � λm, d0
eff � λm. (14)
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FIG. 5. (Color online) Scaled effective macroscopic phos-
phorylation rate coefficient ceff/c

∞
eff as a function of motil-

ity m. Densities of enzymes are: ρK = ρP = 0.2 in (a),
ρK = ρP = 0.05 in (b), and ρK = ρP = 0.01 in (c). First or-
der dephosphorylation model marked as FOD, with d0 = 6ρP,
which corresponds to d = 1 in the basic model. Analytically
calculated c0eff are marked by respective arrows next to the
vertical axis. For all panels ρS = 0.3, c = 1.
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Simultaneously, the microscopic contact reaction rate
constants, c and d, should be much larger than motility,
so that the probability of a reaction firing at a collision
is close to 1,

c� m, d� m. (15)

These conditions are difficult to satisfy in numerical
simulations, therefore to estimate the diffusion-limited
contribution, λm, we subtract the analytically calculated
zero-motility rate constant c0eff from the numerically es-
timated ceff . We will here assume high reaction propen-
sities, c = d = 1000, and consider motilities m ∈ [0, 1000]
and enzyme densities ρE ∈ [0.0001, 0.1]. The EMRRC is
estimated, as previously, from long-run numerical simu-
lations on the 100× 100 lattice, based on Eq. (3).

First we investigate the symmetric case of ρK = ρP =:
ρE. In Fig. 6(a) we show the dependence of ceff/c

∞
eff on en-

zyme densities in a log–log scale for seven values of motil-
ity. The numerical predictions for small motilities, m = 1
and m = 3, lie close the theoretical prediction of the zero-
motility limit (dashed line). It shows that for relatively
small motilities and large enzyme densities the zero-
motility contribution is a substantial part of the overall
effective rate. The theoretically predicted c0eff is the lower
bound for the effective rate coefficient. The zero-motility
contribution is proportional to the enzyme density and
thus for intermediate motilities, m ∈ {10, 30}, it becomes
dominant as enzyme density increases.

In order to eliminate the zero-motility contribution
from the effective rate coefficient, we show (ceff−c0eff)/c∞eff
with respect to enzyme densities (Fig. 6(b)) and with re-
spect to motility (Fig. 6(c)). In light of Eq. (12) we would
expect ceff−c0eff = λm and therefore (ceff − c0eff)/c∞eff to be
proportional to m for fixed densities of enzymes, which is
confirmed in Fig. 6(c). The average of gradients of lines
on the log–log plot is equal to 0.99. We therefore numeri-
cally confirmed our heuristic prediction that in the small
motility limit:

ceff = c0eff + λ(ρE)m. (16)

Figure 6(b) confirms that the coefficient λ decreases
(weakly) with decreasing enzyme density. As discussed
in Sec. IV B, this dependence follows from the fact that
at low enzyme densities, enzymes are surrounded by
clouds of converted substrates. This effect is quantified
in Fig. 4(a) showing that spatial correlation function be-
tween kinase and phosphorylated substrate increases (in
both amplitude and correlation length) with decreasing
density of enzymes. The effective reaction rate is propor-
tional to the density of unconverted substrates in lattice
sites adjacent to the enzyme site. Therefore, it decreases
to zero when the correlation function tends to 1 in r = 1
(adjacent sites).

D. Molecular crowding: steady state dependence
on crowders’ motility

Here we investigate the molecular crowding effect, i.e.,
we analyze how the densities of active substrates in the
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FIG. 6. (Color online) (a) Scaled effective macroscopic phos-
phorylation rate coefficient ceff/c

∞
eff as a function of enzyme

density ρK = ρP. (b) Scaled effective macroscopic phos-
phorylation rate constant with subtracted zero-motility con-
tribution: (ceff − c0eff)/c

∞
eff with respect to enzyme density.

(c) (ceff − c0eff)/c
∞
eff with respect to motility. For all panels

c = d = 1000.

stationary state change due to the presence of additional
molecules, crowding agents, which do not react but oc-
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FIG. 7. (Color online) Phosphorylated substrate fractional
density with respect to the density of crowding agents ρC.
Reagents motilitymR = 100 in (a),mR = 1000 in (b), for four
values of crowding agents motility mC. Dashed lines refer to
the simulations without crowding agents, with scaled reagents
motility m̃, see Eq. (17). Other parameters are ρS = 0.2,
ρK = 0.09, ρP = 0.01, c = 1/6ρK and d = 1/6ρP.

cupy space and diffuse with a given motility mC, not
necessarily equal to m.
As shown in Fig. 9 in Appendix B, the presence of
crowding agents leads to the decrease of effective motil-
ity of reacting molecules and this decrease is more pro-
nounced for small motilities of crowding molecules, and
large motilities of reacting molecules (Fig. 9(b) versus
Fig. 9(a)). The reduction of the effective substrate motil-
ity either increases the fraction of phosphorylated sub-
strates in the stationary state, provided that ρK > ρP,
or, because of the symmetry of the model, decreases this
fraction for ρP > ρK. As shown in Fig. 7(b), the effect of
crowding agents can be almost fully reproduced by the
appropriate scaling of reagents motility,

m̃R := mR
meff(ρR, ρC,mR,mC)

meff(ρR,mR)
, (17)

where ρR = ρS − ρK − ρP is the fractional density of
all reacting molecules assumed to have the same motility
mR. In the numerator of Eq. (17) there is the effective
motility of reacting molecules of density ρR and motil-
ity mR in the presence of crowding agents of density ρC
and motility mC, estimated in numerical simulations and
given in Fig. 9(b). In the denominator of Eq. (17) there is
the effective motility of reacting molecules of density ρR
and motility mR in the absence of additional molecules,
given by the approximate Eq. (22). This shows that the
presence of chemically inert molecules can substantially
change the balance between opposing reactions.

V. DISCUSSION

We investigated the correspondence between micro-
scopic and macroscopic reaction rate coefficients in the
model of the phosphorylation–dephosphorylation cycle
with respect to diffusion (motility). The biological mem-
brane is simplified to a 2-dimensional triangular lattice

where molecules are allowed to move with given motili-
ties and react when in adjacent lattice sites with given
propensities – microscopic reaction rate constants. Based
on numerical simulations we estimated the steady state of
the system (fraction of phosphorylated substrates) as well
as effective macroscopic reaction rate constants (EMR-
RCs) as functions of reaction propensities, fractional den-
sities of substrates, and motility. There are two opposing
limits of infinite and zero motility, for which the EMRRC
steady states were calculated analytically and confirmed
numerically.
In the infinite motility limit, the positions of molecules
are independent and therefore the macroscopic reaction
rate is proportional to the product of enzyme and sub-
strate densities and reaction propensities. This implies
that the macroscopic reaction rate coefficients are equal
to the microscopic propensities multiplied by the num-
ber of potential neighbors (which is 6 in our case of the
triangular lattice). In this limit of infinite motility, the
probability that a reaction fires at a substrate–enzyme
collision is (infinitely) small and proportional to reaction
propensity, and therefore the process can be considered
as reaction-limited.
In the limit of zero motility, reactions can occur only
for the substrates which remain in contact with the op-
posing enzymes and therefore the zero-motility reaction
rate coefficients decrease to zero with enzyme densities
decreasing to zero, but can be significant for dense sys-
tems. In realistic conditions the limit of zero motility
can be approached in very dense systems in which the
effective diffusion is very low due to molecular crowding,
and the probability that a substrate is trapped in contact
with the opposing enzymes is high. This limit gives the
lower bound for the effective reaction rate coefficients for
non-zero motility.
For finite (small, but non-zero) motility we have
shown the emergence of the contribution (proportional
to molecules’ motility) stemming from diffusion-limited
reactions. In this regime (almost) all enzyme–substrate
collisions lead to reactions. The most challenging is
the regime of intermediate motilities, in which we found
(based on numerical simulations) that the EMRRCs (and
steady states of the system) depend in a non-trivial way
on all microscopic reaction propensities and fractional
densities of substrates. Precisely, the effective phospho-
rylation rate coefficient depends not only on the mi-
croscopic phosphorylation rate constant and kinase den-
sity, but also on the dephosphorylation rate constant and
phosphatase density. The parameters describing the ac-
tivity and density of opposing enzymes influence the spa-
tial distribution of phosphorylated substrate and conse-
quently the probability that e.g. a kinase molecule will
collide with a dephosphorylated substrate. Generally,
small enzyme densities give rise to clouds of phosphory-
lated and dephosphorylated substrates surrounding re-
spective enzymes. However, the analytical estimation
of macroscopic parameters for intermediate motility re-
quires, and in our opinion deserves, more effort.
The analysis of the influence of molecular crowding on
the steady state of the system showed that the presence

+ +
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of crowding molecules can be accounted for by modify-
ing effective motility of reagents. Quite surprisingly, a
system without crowding molecules but with appropri-
ately reduced reagents motility predicts almost the same
steady state as the system with crowding molecules. We
have quantified the influence of molecular crowding on
the effective motility of reagents and provided a semi-
analytical formula for the mentioned scaling.

The phosphorylation–dephosphorylation cycle was an-
alyzed under the simplifying assumption in which the
phosphorylation and dephosphorylation are treated as
single-step reactions. In reality these processes involve
at least three steps and require formation of a tran-
sient enzyme–substrate complex. In Appendix D we con-
sider a model in which an enzyme and substrate can
form a transient complex; we show that while enzyme–
substrate binding is relatively short and correspondingly
the enzyme sequestration is low, this more detailed model
predicts almost the same steady states as the original,
more coarse-grained model. In the case of more stable
enzyme–substrate binding, we found that the level of
enzyme (and substrate) sequestration substantially in-
creases with motility, and that consequently the seques-
tration modifies (quantitatively) steady state dependence
on motility. Analysis of this case requires further study.

In summary, our analysis is a step towards the determi-
nation of effective macroscopic reaction rate coefficients
and steady states for ubiquitous cycles of opposing re-
actions with respect to the motility of substrates and
enzymes, and their densities. The presence of two antag-
onistic enzymes and discreteness of reacting substances
lead to inhomogeneities in the phosphorylated and de-
phosphorylated substrate distribution. These inhomo-
geneities are large for slow diffusion and small enzyme
densities, as indicated by spatial correlation functions.
As a result, the effective catalytic activities depend on
the diffusivity and enzymes densities: in the example pre-
sented in Fig. 2(b) kinases “win” at low motility, while
at high motility phosphatases dominate, rendering most
of the substrate dephosphorylated.
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FIG. 8. (Color online) Scaled effective macroscopic phos-
phorylation rate coefficient ceff/c

∞
eff , estimated in simulations

performed on lattices of different sizes. For all simulations
ρS = 0.3, c = 1, m = 1, ρK = ρP = 0.05. In the first-
order dephosphorylation, model marked as FOD, d0 = 6ρP,
which corresponds to d = 1 in the basic model. The differ-
ence between the 10× 10 lattice and the remaining lattices is
statistically significant, the differences between larger lattices
are of order of the statistical error.

APPENDIX A: DEPENDENCE OF EMRRCS ON
THE LATTICE SIZE

Here, we analyze the influence of the lattice size on
the estimated EMRRCs (see Fig. 8). The simulations
were performed on lattices 300× 300, 100× 100, 30× 30,
and 10×10. For each lattice size and each parameter set
(corresponding to parameters chosen for Fig. 5(b) we per-
formed 10 independent simulations with simulation times
t = 103, t = 9 × 103, t = 100 × 103, t = 900 × 103, i.e.,
inversely proportional to the lattice size, which assured
that more than 5 × 104 reactions fired in each simula-
tion. Each simulation was preceded by an equilibration
phase lasting for 1000. We calculated the scaled effective
macroscopic phosphorylation rate coefficient ceff/c

∞
eff in-

dependently for each simulation, and then, based on the
set of ten simulations (for each lattice size and each pa-
rameter set), we calculated the mean value of ceff/c

∞
eff and

the error of the mean. In each case the error of the mean
was found smaller than 10−3. In conclusion, we found
that for assumed densities of molecules the differences
between the 10 × 10 lattice and the remaining lattices
are significant, while the differences between larger lat-
ices are of the order of the statistical error. One could
expect that the dependence of EMRRCs on the lattice
size can be stronger for systems of smaller molecule den-
sities. In the analyzed system there are 45 phosphatases,
45 kinases, and 300 substrates on the 30× 30 lattice.

APPENDIX B: MACROSCOPIC DIFFUSION
COEFFICIENT AS A FUNCTION OF MOTILITY

AND MOLECULES DENSITY

Here, in order to study the impact of molecular crowd-
ing on the phosphorylation/dephosphorylation kinetics
we analyze the impact of crowding agents on effective dif-
fusion coefficient. The macroscopic diffusion coefficient,
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D, of a single tracer molecule having motility m depends
on the total density of the crowding molecules ρC (i.e.,
the fraction of lattice sites occupied by molecules), their
motility mC = m/γ, and the lattice constant `:

D = f(ρC, γ)(1− ρC)`2m/4, (18)

where f is the correlation function that can be approxi-
mated by the following formula [53, 54]:

f(ρC, γ) =
{[(1− γ)(1− ρC)f0 + ρC]2 + 4γ(1− ρC)f2

0 }1/2 − [(1− γ)(1− ρC)f0 + ρC]

2γ(1− ρC)f0
, (19)

where

f0 = (1− α)/[1 + α(2γ − 1)]. (20)

The coefficient α depends on the lattice type; for the
triangular lattice (considered here) α = 0.282, for the
square lattice α = 1 − 2/π and for the honeycomb
(or hexagonal) lattice α = 1/2 [55]. The parameter
meff = f(ρC, γ)(1 − ρC)m will be considered as the ef-
fective motility of the tracer molecule in the presence of
crowding molecules of density ρC and motility mC.

The correlation function f satisfies 0 < f < 1 for
0 < γ < ∞. In the limit of γ → 0, i.e., when crowd-
ing molecules move infinitely fast and a tracer molecule
does not sense their positions, f → 1; in the limit of
γ = ∞, i.e., when crowding molecules do not move, the
expression for f reads:

f(ρC) = max

{
0,

(1− α)− ρC(1 + α)

(1− ρC)(1− α)

}
. (21)

According to the equation above, the diffusion co-
efficient of a tracer molecule drops to zero when the
fractional density of immobile obstacles equals ρcrit =
(1−α)/(1+α) = 0.56, which agrees reasonably well with
the percolation threshold of 1/2 for the triangular lattice.
In the case most interesting to us, i.e., when all molecules
have the same motility (γ = 1), Eq. (18) simplifies to

D(ρC, 1) =

√
ρ2

C + 4(1− ρC)
(

1−α
1+α

)2

− ρC

2
(

1−α
1+α

) `2m/4. (22)

The approximate Eq. (18) agrees well with our simulation
results presented in Fig. 9(a). In these simulations we
estimated the effective motility of the tracer molecule
meff := 〈Dist2〉/∆t, based on the mean square distance
〈Dist2〉 covered by the tracer molecule in time ∆t. To
obtain reasonable statistics at a modest computational
cost we performed simulations in which the number of
tracer molecules was larger than one, but always smaller
than 1% of the number of crowding molecules. Finally,
in order to analyze the influence of crowding molecules
with a given motility on the effective motility of reacting
molecules, we performed simulations in which the density
of reacting molecules was 30%, while different densities
and motilities of crowding molecules were considered, see

Fig. 9(b). These results are used in Sec. IV D to interpret
the effect of molecular crowding on the steady state of the
reacting system.

mC = 1000
mC = 100
mC = 10
mC = 1

ρR = 0.3

(b)

ρC

meff

m

0.60.40.20

1

0

γ = 10
γ = 1
γ = 0.1
γ = 0

(a)

ρC

meff

m

10.80.60.40.20

1

0

FIG. 9. (Color online) Scaled effective motility meff/m as
a function of density of crowding molecules ρC, and motil-
ity mC = m/γ. (a) Effective motility of a tracer molecule
in the presence of crowding molecules. Lines correspond to
the theoretical result given by Eq. (18), circles mark results
of corresponding numerical simulations. (b) Scaled effective
motility meff/m of reacting molecules with fractional density
ρR = 0.3 and motility m = 1000 in the presence of crowders.
This result is used in simulations shown in Fig. 7(b).

APPENDIX C: SYSTEM EQUILIBRATION

In this appendix we numerically analyze system relax-
ation to the steady state. Within the framework of our
main model we consider irreversible and reversible dy-
namics with the initial condition in which all substrates
are dephosphorylated. In the irreversible case, Fig. 10(a),
we assume that phosphatases are absent, while in the re-
versible case we assume that the density of phosphatases
is either equal to, or three times higher than the density
of kinases, Figs. 10(b) and (c). In both cases, since at
t = 0 all substrates are dephosphorylated, there is no
correlation between the position of a substrate molecule
and its phosphorylation status. Therefore, in the limit of
t → 0, the scaled effective macroscopic phosphorylation
rate coefficient ceff/c

∞
eff → 1, however on the time scale

of 1/c (when substrates being in contact with kinases are
phosphorylated) it decreases to lower values.
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FIG. 10. (Color online) Scaled effective macroscopic phosphorylation rate coefficient ceff/c
∞
eff and fractional density of phos-

phorylated substrates ρSp/ρS as a function of time with initial density of phosphorylated substrate set zero. Simulations were
performed for ρK = 0.001, ρS = 0.3, m = 1, c = 1, d = 1. Two cases are considered: non-reversible phosphorylation (a)
with ρP = 0 and reversible phosphorylation–dephosphorylation cycle (b) and (c) with ρP = ρK and ρP = 3ρK. The curves in
panels (a), (b) and (c) result from averaging over 1000 independent simulations performed on the 300 × 300 lattice. In the
non-reversible case, the fraction of dephosphorylated substrate drops to 0.5% at the end of simulations leading to substantial
fluctuations in the effective macroscopic phosphorylation rate coefficient. Coefficients of the fitting function in (a) are: a = 5.044
and b = 1.586. In panels (d), (e) and (f) we compare ceff(t)/c

∞
eff estimates based on 1000 simulations (black line) with the

estimates based on 333 simulations (three red lines). The trajectories for t > 1000 are shown in the insets.

In the irreversible case, Fig. 10(a), ρSp
/ρS → 0, while

the effective macroscopic phosphorylation rate coefficient
decreases slowly with time. Torney and McConnel [11]
showed theoretically that in two dimensions (in contrast
to three dimensions) reaction rate coefficient of the ir-
reversible reaction A + B → ∅ decreases logarithmically
in time. The fit showed in Fig. 10(a) suggests that also
for our reaction, K + Su → K + Sp, the reaction rate
coefficient decreases logarithmically as a/ ln(bt), where
a = 5.044 and b = 1.586.

In the reversible case considered in this study (see
Figs. 10(b) and (c)), we observe that the effective macro-
scopic phosphorylation rate coefficient, as well as the den-
sity of phosphorylated substrate ρSp

/ρS, converge to the
(positive) steady state values. Interestingly, the conver-
gence of the effective macroscopic phosphorylation rate
coefficient is about one order of magnitude faster than
the convergence of ρSp

/ρS, which shows that the steady
state values of EMRRCs can serve as a good approxima-
tion also when the system is far from its steady state.

The effective macroscopic phosphorylation rate coef-
ficient shown in Figs. 10(a), (b) and (c) was calculated
based on Eq. (3a) by averaging over 1000 independent
simulations on the 300 × 300 lattice. The time interval
∆t was adjusted in such a way that the cumulative num-
ber of reactions (in 1000 simulations) is not smaller than
50 000. Therefore, in the reversible case, ∆t is of order of
1 during the whole simulation, while in the irreversible
case (in which the frequency of phosphorylation events

decreases substantially) ∆t increases from 1 to about 200
at the end of simulation time. Since the time derivative
of ceff(t)/c∞eff also decreases, the increase of ∆t does not
contribute substantially to the error.

To demonstrate the accuracy of our ceff(t)/c∞eff numer-
ical estimates, in Figs. 10(d), (e) and (f), we compared
the estimates based on 1000 simulations with three es-
timates, each based on 333 simulations. The difference
between estimates based on 1000 and 333 simulations is
visible only in the close-ups (insets).

APPENDIX D: ANALYSIS OF THE MODEL
WITH TRANSIENT ENZYME–SUBSTRATE

COMPLEXES

The phosphorylation–dephosphorylation cycle was an-
alyzed under the simplifying assumption in which the
phosphorylation and dephosphorylation are treated as
single-step reactions. In reality these processes involve
at least three steps and require formation of a transient
enzyme–substrate complex. It is therefore important to
verify whether the analyzed effects are preserved when
the more accurate description is considered. In the more
detailed model, reactions (1) are replaced by

K + Su

c1⇀↽
c2
{K · Su} c3−→ {K · Sp} c4−→ K + Sp, (23a)

P + Sp

d1⇀↽
d2
{P · Sp} d3−→ {P · Su} d4−→ P + Su, (23b)
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FIG. 11. (Color online) (a) Fractional density of phosphorylated substrates as a function of the enzyme ratio for different values
of motility m. We compare the model variant in which the formation of a transient enzyme–substrate complex is explicitly
included (the case of weak enzyme sequestration, Eqs. (24); dotted lines) with the original model prediction shown in Fig. 2(a)
(solid lines). The parameters used in the simulations of the basic (original) model: ρS = 0.3, ρK = 0.1, c = 1/6ρK, d = 1/6ρP;
the parameters for the model variant considered are defined by Eqs. (24). In the calculation of the phosphorylated substrate
fraction only free (unbound) substrates are considered. (b) Fractional density of phosphorylated substrates as a function of
m. We compare the original model prediction shown in Fig. 2(b) (black line) with the model variant in which the formation
of a transient enzyme–substrate complex is explicitly included; two cases are considered: weak sequestration, Eqs. (24), and
moderate enzyme sequestration, Eqs. (25). The parameters used in simulations are: ρS = 0.3, ρK = 0.1, ρP = 0.01, c = 1,
d = 100. (c) Fraction of sequestered reactants for the weak and moderate sequestration cases as a function of m in simulations
performed for (b). (d) Steady-state densities of all reactants and complexes in the case of moderate sequestration, Eqs. (25),
for three motilities: m = 1, m = 1000 and m =∞. Values for finite motility come from simulations performed for (b). Values
for infinite motility are given by the steady state of the corresponding system of ODEs.

where curly brackets denote complex.
We consider two sets of reaction rate constants corre-

sponding to the short or longer enzyme–substrate bind-
ing, implying respectively either weak or stronger but
still moderate enzyme sequestration. The constants for
the two cases are:
weak sequestration:

c1 = 2c, c2 = 10c, c3 = 10c, c4 = 100c, (24a)
d1 = 2d, d2 = 10d, d3 = 10d, d4 = 100d;(24b)

moderate sequestration:

c1 = 10c, c2 = 9c, c3 = c, c4 = 100c, (25a)
d1 = 10d, d2 = 9d, d3 = d, d4 = 100d. (25b)

For these two sets of constants a substrate being ini-
tially in contact with an enzyme molecule is modified
with almost the same probability as in the original model.
For this model variant we performed an analysis analo-
gous to that shown in Fig. 2 (see Fig. 11). In the case of

weak sequestration, we obtained the quantitatively sim-
ilar dependence of fraction of phosphorylated substrate
on enzyme density and on motility (Fig. 11(a,b)) as in
the original model.

For stronger sequestration, for which the fraction of
sequestered kinase exceeds 60% (for large motilities), the
agreement with the original model (Fig. 11(b)) is only
qualitative. Importantly, the fraction of sequestered en-
zymes and substrates significantly grows with motility.
This is due to the fact that the increase of motility im-
plies more enzyme–substrate encounters, and therefore
increases their binding rate, not influencing the dissocia-
tion rate.

Overall, the analysis of the above model variant shows
that the reported dependence of steady state on motility
is independent of the details of the phosphorylation and
dephosphorylation processes, as long as the fractions of
sequestered enzymes and substrate are small, and results
from the presence of opposing enzymes in the reaction
network. However, for stronger enzyme–substrate bind-
ing, the fraction of sequestered reactants is higher (and
dependent on their motility), and therefore the quantita-
tive dependence of the phosphorylated substrate fraction
on motility can differ, and requires further study.
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