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ABSTRACT
The dynamics of highly flexible micro- and nano-filaments are important to a variety of biological, medical, and industrial problems. The
filament configuration variation and cross-stream migration in a microchannel are affected by thermal fluctuations in addition to elastic
and viscous forces. Here, hydrogel nano-filaments with small bending Young’s moduli are utilized to elucidate the transitional behavior of
elastic Brownian filaments in an oscillatory microchannel flow. A numerical model based on chain elastic dumbbells similar to the Rouse–
Zimm model accounting for elastic, viscous, and random Brownian forces is proposed and implemented. In addition, a theoretical model to
describe the average orientation–deformation tensor evolution for an ensemble of filaments in an oscillatory flow is proposed. The results are
compared with the evolution observed in the experiments.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0011005., s

I. INTRODUCTION

Dynamics of flexible micro- and nano-filaments is of impor-
tance to a variety of biological and industrial systems.1,2 Deforma-
tion of such filaments determines rheological properties of polymer
solutions and transport of subcellular structures.1 Understanding
the dynamics of individual polymer objects provides a direct link
between the macromolecular configurations (based on molecular
models) and rheological properties of polymeric systems. A com-
prehensive understanding of the dynamics of individual polymer
macromolecules is crucial for their further application.3,4

The microscopic structure and the macroscopic response
depend on both the nature of the suspended objects and the kine-
matics of the surrounding viscous flow. Linking mechanical and
microscopic properties of the suspended objects to the macro-
scopic response of the suspension or polymer solution is one of
the fundamental scientific challenges of soft matter physics, which
remains open for a large number of important situations. When the

persistence length of a filament is small in comparison to the length
of the filament, thermal fluctuations can significantly affect its defor-
mation dynamics.1 For example, it has been predicted that long
fibers may perform spectacular windings to form more or less stable
knots, the phenomenon of fundamental importance for biological
macromolecules.5,6 This phenomenon applies to all living cells, the
interior of which is a high level of molecular crowding. Preliminary
simulations have shown that the crowding has a significant impact
on the process of creating loops and winding of long polymer chains.
This is an important information for the creation of a DNA loop in
the presence and absence of protein and for folding of polypeptide
chains.7,8

New experimental techniques in fabricating fibers with desired
dimensions and tracking their migration and deformation have
led to better capture of the dynamics of such fibers under differ-
ent flow conditions.1 Coaxial electrospinning technique is a conve-
nient method of fabricating core–shell fibers with innovative flex-
ible hydrogel nanofilaments as a core.9 Such objects have high
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flexibility making them candidates for macroscopic objects, which
are affected by thermal fluctuations in addition to viscous and elastic
forces.9,10

There have been considerable efforts to numerically simulate
the interaction of flexible filaments with fluid flow. The follow-
ing approaches have been considered: the local slender-body the-
ory, the immersed boundary method, and the bead-rod models.1

A numerical study of the three-dimensional dynamics of a flexible
non-Brownian fiber in shear flow revealed that they are attracted to
stationary, periodic, or quasi-periodic solutions depending on the
ratio of local bending stiffness to hydrodynamic forces.11 The fiber
was modeled as a chain of spherical beads.11 Reference 12 stud-
ied the effect of confinement on the configuration evolution and
drift of elastic fibers. Reference 13 elucidated experimentally and
numerically the dynamics of elastic filaments in shear flow. Brow-
nian fluctuations were considered in addition to the elastic bending
and viscous stresses in the numerical model developed using nonlo-
cal slender-body hydrodynamics.13 They observed different filament
dynamics including tumbling to buckling and snaking motions.13

An alternative model that incorporates all these physical effects
and allows for description of the evolution of individual filament
dynamics or the ensemble-averaged orientation–deformation tensor
is proposed in the present work.

In particular, in the present work, we elucidate the transient
deformation of the hydrogel nano-filament subjected to the elas-
tic, viscous, and random Brownian forces in a microfluidic channel
flow. In the experiments, hydrogel nano-filaments were formed by
the coaxial core–shell electrospinning process14 and observed under
an oscillatory flow condition. An individual flexible gelled filament is
modeled as a chain of elastic dumbbells accounting for the random
thermal fluctuations and viscous and elastic forces. Furthermore, the
ensemble-averaged orientation–deformation tensor describing the
flexible gelled filament evolution is described theoretically, and a
particular case of the oscillatory flow is considered in detail. Such
theoretical predictions are compared to the available experimental
data.

II. EXPERIMENTAL

A. Hydrogel filament preparation
Hydrogel filaments were formed by the coaxial core–shell elec-

trospinning process. The hydrogel formed the core part in the
core–shell fibers. The core hydrogel solution comprised monomer,
cross-linker, the initiators of polymerization reaction, and a dye.
N-isopropylacrylamide (NIPAAm, 97%, Sigma-Aldrich, Poland)
was the monomer used, and N,N′-methylene bisacrylamide (BIS-
AAm, 99.5%, Sigma-Aldrich, Poland) was used as a cross-linker.
Ammonium persulfate (APS, 98%, Sigma-Aldrich, Poland) and
N,N,N′,N′- tetramethylethylenediamine (TEMED, 99%, Sigma-
Aldrich, Poland) were used as the initiators of polymerization reac-
tion, and Bovine Serum Albumin (BSA) conjugated with fluorescein
(BSA-FITC, Sigma-Aldrich, Poland) was used as a dye for better
visualization.

A shell layer was formed from poly(L-lactide-co-caprolactone)
(PLCL, 70% L-lactyde and 30% caprolactone unit, Corbion Purac,
The Netherlands). Hydrogel filaments were extracted from the

core–shell fibers by dissolving the shell in small amount of pure
N,N-dimethylformamide (DMF, POCh, Poland). After about
30 min, deionized water was added diluting the solution to 25%
DMF (v/v), and the filament shells were suspended in this mixture.
The detailed information about preparation of the core and shell
solutions (in particular, the concentrations of each component), as
well as the fabrication of core–shell fibers by electrospinning (e.g.,
the parameters of the co-electrospinning process), can be found in
Ref. 10.

B. Behavior of hydrogel filaments subjected
to the oscillatory flow

The prepared suspension resulted in fragments of hydrogel
filaments of random length. Fabrication of such discontinuous
fragments (filaments) was possible due to the use of one of two
strategies. The first is the control of the ratio of flow rates of the core-
and shell-forming solutions. Theoretically, the lower the flow rate of
the core solution, the shorter the hydrogel filaments, which are also
found at greater distances from each other (cf. Fig. 4.8a in Ref. 20).
The smaller the difference between the flow rates of the two core–
shell fiber components, the longer the hydrogel core and the smaller
the distance between successive filaments (cf. Fig. 4.8b in Ref. 20).
Another way of fabricating core–shell fibers with discontinuous core
(in the form of filaments) is to use polymerization reaction initiators,
such as APS (ammonium persulfate, 98%, Sigma-Aldrich, Poland)
and TEMED (N,N,N′,N′-tetramethylethylenediamine, 99%, Sigma-
Aldrich, Poland). Probably, their inhomogeneous distribution in
the precursor solution of the hydrogel causes it, at some places,
not to polymerize, and as a consequence it remains liquid that can
leak out of the forming core–shell fibers. This problem was solved
using a photoinitiator, i.e., a compound (Irgacure 2959, 98%, Sigma-
Aldrich, Poland) initiating the polymerization reaction under the
influence of UV radiation.21 This solution, however, was not used
in the present work because its purpose is to examine filaments with
a length of not more than 100 μm. In addition, the lack of complete
homogeneity of the solution may further affect the non-uniformity
of filament shape, manifested, for example, by narrowing the fil-
aments at random places along their length. Such a non-uniform
shape, however, is typical in the case of biological objects such as
proteins.

An overall view of the hydrogel does not reflect its actual behav-
ior in the form of filaments with a nanometer cross-section and a
length not exceeding significantly 100 μm. The filament length is
important here because it causes a specific behavior. Experimen-
tal studies have shown that filaments over 40 μm in length reveal
a significant response to environmental conditions, in particular, to
the flow field. Such longer filaments have a tendency to bend and
exhibit other conformational changes. In contrast, filaments shorter
than 40 μm were much less affected by fluid flow. They were most
often rotated, and the distance between the ends of a given fila-
ment had not changed significantly. The observations of filaments
much longer than 100 μm revealed only slight changes in the posi-
tion of individual segments of a given filament. They were usu-
ally a compact (coiling) structure moving holistically in a certain
direction.10

The prepared suspension was injected into a microfluidic chan-
nel fabricated from polydimethylsiloxane (PDMS) (cf. Fig. 1) with
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FIG. 1. The experimental setup with the schematic including the peristaltic pump used to induce oscillatory flow in the microchannel with a hydrogel filament in the visualization
area.

the length, width, and depth of 30 mm, 200 μm, and 60 μm,
respectively. The oscillatory flow in the system was generated by
using a custom-made peristaltic pump connected to one end of the
microchannel (cf. Fig. 1). The oscillatory flow was implemented
to simulate the intracellular fluid motions in the human body, for
example, pulsatile blood flow in the human arteries. It is therefore,
a natural type of flow that determines transport of biological par-
ticles in the human body. The other end of the microchannel was
locked by a syringe filled with the suspension of hydrogel filaments
(cf. Fig. 1). The oscillatory flow field determines the behavior of
elongated objects, such as proteins, and here, hydrogel filaments are
used as their model. The selected velocity range made it possible to
observe conformational changes experienced by hydrogel filaments
(bending, re-orientation, and migration) caused by the flow.

For the observation of the filament behavior during exper-
iments, an inverted epifluorescence microscope (Leica AM TIRF
MC) was used. Because the filaments contained fluorescent dye,
their observation was possible due to the use of a mercury lamp
(Leica EL6000), a 20×/0.40 NA microscopic lens, and a high-gain
EM-CCD camera (C9100-2, Hamamatsu). Only filaments located in
the middle part of the channels (15 mm from the channel inlet and
30 μm above the bottom wall of the microchannel) were observed
and analyzed during the experiment. To record the filament
displacements in each series, 500–2000 individual images were
obtained. The microfluidic system was located in a closed chamber,
and the temperature was stabilized at 302 ○K. The maximum flow
velocity amplitude and the corresponding Reynolds number (based
on the width of the channel) were in the 0.06 mm/s–0.27 mm/s and
0.01–0.07 ranges, respectively. The frequency of the applied flow was
in the 0.26 Hz–0.59 Hz range.

In the experiments, the analyzed filaments have lengths ranging
between 10 μm and 80 μm. The numerical model is developed for
an arbitrary filament length. The case discussed in relation to the
numerical simulations corresponds to the dimensionless length of 1,
as specified in Sec. III.

III. THEORETICAL: DYNAMICS OF AN INDIVIDUAL
GELLED FILAMENT

A flexible gelled filament can be modeled as a chain of elastic
dumbbells similar to the Rouse–Zimm model;15,16 cf. Fig. 2.

The model consists of elastic springs freely-jointed through N
nodes corresponding to the concentrated action of the drag force
from the surrounding liquid. Let R∗i be the position vector of node
i. Then, the unit local tangent vector τi = (R∗i − R∗i−1)/∣R∗i − R∗i−1∣,
and the elastic force spanning two neighboring nodes is

Felastic = πa2
i E
⎡⎢⎢⎢⎣

∣R∗i − R∗i−1∣
∣R∗i,0 − R∗i−1,0∣

− 1
⎤⎥⎥⎥⎦

(R∗i − R∗i−1)
∣R∗i − R∗i−1∣

, (1)

where ai is the local cross-sectional radius, E is Young’s modulus,
and subscript zero here and hereinafter corresponds to the unloaded
configuration. Here and hereinafter, vectors and tensors are denoted
by boldfaced characters.

The mass conservation of any element of the chain means that

πa2
i λi = πa2

0, (2)

where λi is the stretching ratio, λi = ∣R∗i − R∗i−1∣/∣R∗i,0 − R∗i−1,0∣.

Phys. Fluids 32, 072008 (2020); doi: 10.1063/5.0011005 32, 072008-3

© Author(s) 2020

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 2. Schematic of the flexible gelled filament similar to the Rouse–Zimm model.
R∗i being the position vector of node i.

Then, using Eq. (2), Eq. (1) takes the following form:

Felastic = πa2
0E
⎡⎢⎢⎢⎣

1 −
∣R∗i,0 − R∗i−1,0∣
∣R∗i − R∗i−1∣

⎤⎥⎥⎥⎦

(R∗i − R∗i−1)
∣R∗i − R∗i−1∣

. (3)

The gelled filament is a material entity that cannot intersect
itself. To model this property, a localized self-repulsion force acting
between two approaching elements can be artificially introduced to
guarantee their mutual repulsion (self-avoidance),

Fself - repulsion = Fr
Q

∣R∗i − R∗j ∣
γ+1 (R

∗

i − R∗j ), (4)

where scalar multiplier Q and the exponent γ being sufficiently large
to provide a significant repulsion force between two approaching
nodes i and j, and the scalar factor Fr is chosen as

Fr = 1 if ∣R∗i − R∗j ∣ <
L0

100
for i ≠ j, (5)

Fr = 0 otherwise. (6)

The total length of the filament is denoted as L0.
Consider a microchannel schematically shown in Fig. 3.
The flow velocity profile is implied to be unaffected by the

presence of the filaments and is denoted as

V∗ = jU0V(x, t), (7)

with the centerline velocity being U0 and V(x, t) being the velocity
profile satisfying the no-slip conditions at the channel walls; j is the
unit vector of the longitudinal direction; x∗ and t∗ are the dimen-
sional lateral coordinate and time, respectively, and x and t are their
dimensionless counterparts.

Each node experiences the Stokesian drag force,

Fdrag = ζ(
dR∗i
dt∗
−V∗i ), (8)

FIG. 3. Top view of the microchannel of the half-width H, with a flexible nano-
filament in the flow field. Coordinates X∗ and Y∗ are directed along the width and
axis of the microchannel, respectively.

where ζ is proportional to the viscosity of the surrounding liquid μ
and the cross-sectional radius ai, i.e., ζ = 6πμai.

Inertia of the elastic dumbbell chain is negligibly small because
of its small size. Because of its smallness, the elastic dumbbell is
assumed to experience the Brownian motion, which corresponds to
the following random force:

Frandom = ζ
√

D
τ
u0i, (9)

where D is the diffusion coefficient, τ is the characteristic time of a
Brownian jump, and u0i is a randomly oriented unit vector.

Then, the force balance for any node in a chain [essentially, the
Langevin equation because of the presence of the stochastic force
(9)] takes the following form:

ζ(dR∗i
dt∗
−V∗i ) =πa2

0E
⎧⎪⎪⎨⎪⎪⎩
−Fd

⎡⎢⎢⎢⎣
1 −
∣R∗i,0 − R∗i−1,0∣
∣R∗i − R∗i−1∣

⎤⎥⎥⎥⎦

(R∗i − R∗ī−1)
∣R∗i − R∗i−1∣

+ Fu

⎡⎢⎢⎢⎣
1 −
∣R∗i + 1,0 − R∗i,0∣
∣R∗i + 1 − R∗i ∣

⎤⎥⎥⎥⎦

(R∗i + 1 − R∗i )
∣R∗i + 1 − R∗i ∣

⎫⎪⎪⎬⎪⎪⎭

+ Fr
Q

∣R∗i − R∗j ∣
γ+1 (R

∗

i − R∗j ) + ζ
√

D
τ
u0i, (10)

using Eqs. (3), (4), (8), and (9).
The dimensionless factors Fd and Fu are incorporated to make

Eq. (10) applicable for all the nodes, including the end nodes i = 1
and i = N,

Fd = Fu = 1 for 2 ≤ i ≤ N − 1,
Fd = 0, Fu = 1 for i = 1,
Fd = 1, Fu = 0 for i = N.

(11)

Render Eq. (10) dimensionless using the following scales: L0
for all lengths and L0/U0 for time, and introduce the following
dimensionless groups:

GE =
a0E

6μU0
, (12)

GD =
1

U0

√
D
τ

, (13)
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GR =
Q

6πμa0Lγ
0U0

. (14)

Then, Eq. (10) takes the following dimensionless form:

dRi

dt
=V(x, t)j − FdGE[1 −

∣Ri,0 − Ri - 1,0∣
∣Ri − Ri - 1∣

] (Ri − Ri - 1)
∣Ri − Ri - 1∣

+ FuGE[1 −
∣Ri + 1,0 − Ri,0∣
∣Ri + 1 − Ri∣

] (Ri + 1 − Ri)
∣Ri + 1 − Ri∣

+ FrGR
(Ri − Rj)
∣Ri − Rj∣γ+1 + GDu0i. (15)

Here and hereinafter, parameters without asterisks are
dimensionless.

In the case of two-dimensional random force, and thus, the unit
vector, u0i, a filament that was originally located in the flow plane
will stay in the flow plane. Then, Eq. (15) has only two projections
onto x and y axes, respectively,

dXi

dt
= −FdGE

⎡⎢⎢⎢⎢⎢⎣
1 −

√
(Xi,0 − Xi−1,0)2 + (Yi,0 − Yi−1,0)2

√
(Xi − Xi−1)2 + (Yi − Yi−1)2

⎤⎥⎥⎥⎥⎥⎦

× (Xi − Xi−1)√
(Xi − Xi−1)2 + (Yi − Yi−1)2

+ FuGE

⎡⎢⎢⎢⎢⎢⎣
1 −

√
(Xi+1,0 − Xi,0)2 + (Yi+1,0 − Yi,0)2

√
(Xi+1 − Xi)2 + (Yi+1 − Yi)2

⎤⎥⎥⎥⎥⎥⎦

× (Xi+1 − Xi)√
(Xi+1 − Xi)2 + (Yi+1 − Yi)2

+ FrGR
(Xi − Xj)

[
√
(Xi − Xj)2 + (Yi − Yj)2]

γ+1 + GD cos θi, (16)

dYi

dt
= V(Xi, t) − FdGE

⎡⎢⎢⎢⎢⎢⎣
1 −

√
(Xi,0 − Xi−1,0)2 + (Yi,0 − Yi−1,0)2

√
(Xi − Xi−1)2 + (Yi − Yi−1)2

⎤⎥⎥⎥⎥⎥⎦

× (Yi − Yi−1)√
(Xi − Xi−1)2 + (Yi − Yi−1)2

+ FuGE

⎡⎢⎢⎢⎢⎢⎣
1 −

√
(Xi+1,0 − Xi,0)2 + (Yi+1,0 − Yi,0)2

√
(Xi+1 − Xi)2 + (Yi+1 − Yi)2

⎤⎥⎥⎥⎥⎥⎦

× (Yi+1 − Yi)√
(Xi+1 − Xi)2 + (Yi+1 − Yi)2

+ FrGR
(Yi − Yj)

[
√
(Xi − Xj)2 + (Yi − Yj)2]

γ+1 + GD sin θi, (17)

where the angle θi corresponds to the direction of the randomly
oriented (in plane) unit vector u0i with 0 ≤ θi ≤ 2π.

The initial conditions for Eqs. (16) and (17) are imposed at
t = 0 as

Xi = Xi,0 and Yi = Yi,0. (18)

The dimensionless flow velocity at a node position in the microchan-
nel involved in Eq. (17) is described according to the experiment
as

V(X, t) = [1 − ∣GLRX∣α] sin(Gωt), (19)

where the exponent α = 4.5 according to the experimental data, and

GLR =
L0

H
, (20)

Gω =
ωL0

U0
, (21)

and ω = 2πf is the angular frequency (with f being frequency).
The velocity profile (19) was obtained as a correlation accu-

rately describing the results of the finite-element simulations of the
oscillatory flow inside a rectangular microchannel, which were also
conducted in the present work. This correlation is also supported by
experimental data [cf. Fig. 1(c) 10]. This velocity profile is a plug-like
shape already at the beginning of the oscillation cycle. Such plug-
like velocity profiles in the x–y plane are very similar to the velocity
profile typically found in large arteries or arterial tree networks.

IV. NUMERICAL SOLUTIONS FOR INDIVIDUAL
GELLED FILAMENTS

The Langevin equations (16) and (17) with the initial con-
ditions (18) are solved splitting the other physical processes from
diffusion for a short dimensionless time interval Δt and then
accounting separately for the diffusion at the same interval. At the
without-diffusion interval, Eqs. (16) and (17) are integrated numer-
ically using the Kutta–Merson method with GD = 0. After that, at
the diffusion step, the node coordinates Xi and Yi are rearranged
according to the diffusion process as following.

The probability of a diffusion jump of length Δr∗ during time
Δt∗ is given by

P = exp(− Δr2
∗

DΔt∗
), (22)

where 0 ≤ P ≤ 1 is a random number.
In the dimensionless form, Eq. (22) can be rearranged as

Δr = GD

√
ln( 1

P
)Δt, (23)

accounting for the fact that τ = Δt. Note that the jump Δr is directed
in a random direction, which determines the angle θi in Eqs. (16)
and (17) as a random number from the interval 0 ≤ θi ≤ 2π.

After the diffusion step, during which all the nodes are shifted
in random directions, there is the need to check whether any of the
random steps led to a local self-intersection of the filament. If so hap-
pened, the random step for that particular node is reversed. This is
done in the numerical scheme in addition to the self-repulsion force
of Eq. (4), which is required because the latter is not implemented
during the diffusion step.

Figure 4 shows the filament evolution in the case where the fil-
ament was initially aligned normally to the channel axis with the
center of this filament located at X = 7.5. The dimensionless half-
channel width is taken as 10, i.e., the width of the channel spans from
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FIG. 4. Evolution of a filament in flow (the initial dimensionless filament length equals to 1). The filament is initially aligned normally to the channel axis and centered at
X = 7.5. Dimensionless time moments: (a) t = 50, (b) t = 150, (c) t = 300, and (d) t = 500. The following values of the dimensionless groups were used in the simulations: the
time step Δt = 0.005; the dimensionless groups are: GE = 1.0, GD = 1.0, GLR = 0.1, α = 4.5, GR = 10−10, and N = 200 nodes.

X = −10 to X = +10. This filament evolves in a flow with the pro-
file shown in Fig. 5(a) without flow oscillations. Figure 5(b) shows
that the filament center initially drifts toward the lower values of
X, i.e., toward the channel centerline, and then drifts back toward
the wall (toward X = 10) at later times. The filament configurations
shown in Figs. 4(a)–4(d) reveal that the filament initially stretches
and aligns along the flow (toward the direction of the channel axis)
due to the shear imposed by the flow. Additionally, the Brownian
motion-induced fluctuations make the filament wiggle randomly.
However, being aligned with the flow (in the channel axis direction),
shear is not dominant in changing the alignment of the filament.
One can consider that the Brownian motion results in filament wig-
gle to a certain radius, while the shear further orients the filament.
A quasi-equilibrium is reached, where the alignment effect of the
shear is countered by the random Brownian motion. As a result, it
coils under the action of the restoring elastic force and the random
force responsible for the Brownian motion.

In Fig. 6, the filament was initially aligned normally to the chan-
nel axis with the center located at X = 7.5 (similarly to the initial
condition in Fig. 4), whereas the flow was turned off. This results in
the filament deformation only due to the restoring elastic forces and

Brownian motion. The coiling due to the Brownian motion is seen
in Fig. 6 comparing the configurations predicted at time moments
t = 50 and t = 500.

The total length of the filament at the end of each time step is
also predicted in both cases considered in Figs. 4–6, and the evo-
lution of the dimensionless filament length in time is depicted in
Fig. 7(a). With only Brownian diffusion and the elastic restoring
force (without flow), the filament stretches from the initial dimen-
sionless length of 1 to ∼1.5 due to the random forces and then
practically does not change, keeping the same gyration radius of the
corresponding coil. In the case with flow, the filament initially sig-
nificantly stretches due to the effect of the shear flow to a maximum
dimensionless length of ∼8. However, this stretching is accompanied
by the filament alignment with the flow, which diminishes the effect
of shear. Accordingly, the filament is not experiencing significant
stretching anymore and begins to coil, reaching a similar gyration
radius as without flow in a sufficiently long time (t ∼ 450), as seen
in Fig. 7. This corresponds to the image sequence in Fig. 4, where
the flow stretches and orients the filament through panels (a)–(c) of
Fig. 4, and then, coiling due to Brownian diffusion prevails [panel
(d) of Fig. 4].
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FIG. 5. (a) The flow velocity profile in the half-channel (the dimensionless half-channel width is taken as 10) in the case of Fig. 4. (b) The center of the filament drifts in time.
The following values of the dimensionless groups were used in the simulations: the time step Δt = 0.005, GE = 1.0, GD = 1.0, GLR = 0.1, α = 4.5, GR = 10−10, and N = 200
nodes.

In the experiments, however, stretching might not be that large
as in Fig. 7(a). The predictions with the increased values of GE = 5
and GE = 10, i.e., for stiffer filaments with increased Young’s mod-
uli, are shown in Figs. 7(b) and 7(c), respectively. It is seen that the
predicted conformations are qualitatively similar to that of Fig. 7(a),
albeit the filament stretching is much lower: ∼1.7 for GE = 5 and ∼1.5
for GE = 10.

FIG. 6. Evolution of a filament (with the initial dimensionless length equal to 1)
initially aligned normally to the channel axis and centered at X = 7.5. There is no
flow, and the filament is subjected only to the elastic force and Brownian diffusion.
Filament configurations at the dimensionless time moments t = 50 and t = 500
are shown. The following values of the dimensionless groups were used in the
simulations: the time step Δt = 0.005, GE = 1.0, GD = 1.0, GLR = 0.1, α = 4.5,
GR = 10−10, and N = 200 nodes.

V. THEORETICAL: THE ORIENTATION–DEFORMATION
TENSOR

The evolution of an ensemble of flexible gelled filaments can
be characterized by the average orientation–deformation tensor Λ.
Consider an entire filament as an elastic dumbbell characterized by
its end-to-end vector R. In the absence of the Brownian diffusion
and elastic relaxation, the filament evolution is fully dictated by the
surrounding flow and is described as

R(t + Δt) = Ft(t + Δt) ⋅ R(t), (24)

where Ft(t + Δt) is the gradient-of-deformation tensor from moment
t to moment t + Δt.17

Note that in the present section, all parameters are dimensional,
and asterisks are not used for the sake of brevity.

For Δt→ 0,

Ft(t + Δt) = I +∇v(t)Δt + O(Δt2), (25)

where I is the unit tensor and∇v is the velocity-gradient tensor fully
determined by the flow field in the channel. By definition, the second
rank tensor Λ = ⟨RR⟩, where ⟨⟩ denotes the ensemble averaging.

Then, using Eq. (25), one obtains

⟨RR(t + Δt)⟩ = ⟨RR(t)⟩ + [∇v(t) ⋅ ⟨RR(t)⟩ + ⟨RR(t)⟩ ⋅ ∇vT(t)]Δt

+ O(Δt2). (26)

Accordingly, the change of Λ from time t to time t +Δt is

Δ1Λ = (∇v ⋅Λ + Λ ⋅ ∇vT)Δt + O(Δt2), (27)

where subscript 1 denotes the flow-related deformation only, and the
fact that Brownian diffusion and elastic relaxation are not accounted
for yet.

Now, consider the effect of the elastic relaxation and Brown-
ian diffusion on the change of the orientation–deformation tensor
Λ = ⟨RR⟩ in time. In this case, the effect of the flow should not be
accounted for because it is already taken into account in Eq. (27). A
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FIG. 7. (a) Dimensionless filament length
vs time in two cases: with and with-
out flow corresponding to Figs. 4 and 6,
respectively. (b) Dimensionless filament
length vs time with the input parameter
GE = 5 and (c) GE = 10, while the other
parameters as in panel (a): Δt = 0.005,
GD = 1.0, GLR = 0.1, α = 4.5, GR = 10−10,
and N = 200.

node in the equivalent elastic dumbbell considered here experiences
the Stokes drag from the surrounding liquid,

Fdrag = ζ
dR
dt

, (28)

where ζ = 6πμR0, with R0 = bN1/2 being an equivalent cross-sectional
radius (or the corresponding Flory result for a self-avoiding fila-
ment can be used here and hereinafter), b being the length of “the
Kuhn segment” in the filament, and N being the number of such
segments.

The random force acting on the node and responsible for the
Brownian motion is given by

Frandom = ζ
√

D
τ
u0, (29)

where u0 is a random unit vector.
The elastic force acting on the node is

Felastic = Eπa2(λ − 1)eR, (30)

where λ is the stretching ratio and eR is the unit vector directed along
the dumbbell.

Using the mass conservation condition πa2λ = πa2
0 and consid-

ering small strains ε, i.e., 1/λ ≈ 1 − ε, one can rearrange Eq. (30) to
the following Hookean form:

Felastic = Eπa2
0εeR. (31)

Accounting for the fact that εeR = R/R0, where R0 is the unloaded
filament end-to-end vector length, Eq. (31) takes the form

Felastic = Eπa2
0R/R0. (32)

The force balance equation, i.e., the Langevin equation for the
dumbbell node based on Eqs. (28), (29), and (32), is

ζ
dR
dt
= −Eπa2

0R
R0

+ ζ
√

D
τ
u0. (33)

Introduce the elastic relaxation time θ and the random function
φ(t) as

θ = R0ζ
Eπa2

0
, φ(t) =

√
D
τ
u0. (34)

Then, Eq. (33) takes the following form:

dR
dt
= −R

θ
+ φ(t). (35)

Integrating Eq. (35) over a time interval Δt→ 0 but still much longer
than the frequency of variation of the random force, one obtains

R(t + Δt) = R(t) − R(t)
θ

Δt +
Δt

∫
0

φ(u + t)du, (36)

where u is a dummy variable.
Accordingly,

RR(t + Δt) = RR(t) − 2
θ
RR(t)Δt +

Δt

∫
0

φ(u + t)duR(t)

−
Δt

∫
0

φ(u + t)du
R(t)
θ

Δt + R(t)
Δt

∫
0

φ(u + t)du

− R
θ
Δt

Δt

∫
0

φ(u + t)du +
Δt

∫
0

Δt

∫
0

dudmφ(u + t)φ(m + t)

+ O(Δt2), (37)

where m is another dummy variable.
The ergodic hypothesis is invoked to identify the ensemble

averaging with the time averaging for an individual elastic dumbbell.
In addition, the random force, i.e., the diffusion Brownian process is
considered to be Markovian. Accordingly,

⟨φ(t)⟩ = 0, ⟨φ(t1)φ(t2)⟩ = δ(t1 − t2)⟨φ(t1)φ(t1)⟩. (38)
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Then, averaging Eq. (37) and using the first part of Eq. (38) yield

Λ(t + Δt) = Λ(t) − 2
θ
Λ(t)Δt +

Δt

∫
0

Δt

∫
0

du dm⟨φ(u + t)φ(m + t)⟩.

(39)
Note that Λ = ⟨RR⟩.

Using the second part of Eqs. (34) and (38) and accounting for
the fact that, essentially, τ = Δt, one obtains

Λ(t + Δt) = Λ(t) − 2
θ
Λ(t)Δt + D⟨u0u0⟩Δt. (40)

The latter means that

Δ2Λ = [−
2
θ
Λ + D⟨u0u0⟩]Δt, (41)

where subscript 2 signifies that the Brownian diffusion and elastic
relaxation are accounted for, whereas the flow-related deformation
is excluded.

It is easy to show that

⟨u0u0⟩ =
I

M
, (42)

where M = 2 for the two-dimensional diffusion (as will be in the
present case considered below) or M = 3 in the case of the general
three-dimensional diffusion.

Accordingly, Eqs. (41) and (42) yield

Δ2Λ = −
2
θ
(Λ − Dθ

2M
I)Δt. (43)

Merging the physical processes described separately16,18,19 in
Eqs. (27) and (43), the following equation for the orientation–
deformation tensor is obtained:

dΛ
dt
= ∇v ⋅Λ + Λ ⋅ ∇vT − 2

θ
(Λ − Dθ

2M
I). (44)

Note that in fluid at rest, i.e., at ∇v = 0, a filament in a while, being
subjected only to the Brownian motion, inevitably should reach its
equilibrium “coiled” configuration corresponding to dΛ/dt = 0,

Λeq =
Dθ
2M

I = Nb2

M
I. (45)

(In the second equality here, the corresponding Flory result for a
self-avoiding filament can be used.)

Equation (45) yields

D = 2Nb2

θ
. (46)

Using the first part of Eq. (34), this expression for the diffusion
coefficient takes the form

D = 2Nb2Eπa2
0

R0ζ
. (47)

Accounting for the fact that Nb2 = R2
0 and ζ = 6πμR0, Eq. (47) for

the diffusion coefficient takes the following form:

D = Ea2
0

3μ
. (48)

Similarly, the first part of Eq. (34) for the elastic relaxation time takes
the form

θ = 6μR2
0

Ea2
0

. (49)

In addition, Eq. (46) shows that

Dθ = R2
0, (50)

and thus, Eq. (44) takes the final form

dΛ
dt
= ∇v ⋅Λ + Λ ⋅ ∇vT − 2

θ
(Λ − R2

0

2M
I). (51)

Consider a two-dimensional shear flow similar to that in the
microchannel in Fig. 3 with a gradient-of-velocity tensor with the
following matrix:

∇v =
⎛
⎝

0 0

β̇ 0

⎞
⎠

, (52)

where β̇ is the shear rate.
Then, Eq. (51) yields the following equations for the individual

components of the orientation–deformation tensor:

dΛxx

dt
= −2

θ
(Λxx −

R2
0

2M
), (53)

dΛxy

dt
= β̇Λxx −

2
θ
Λxy, (54)

dΛyx

dt
= β̇Λxx −

2
θ
Λyx, (55)

dΛyy

dt
= −2

θ
(Λyy −

R2
0

2M
). (56)

Note that Eqs. (53)–(56) are dimensional.
Equations (53) and (56) show that the diagonal components of

the orientation–deformation tensor will be constant and keep their
equilibrium values

Λxx = Λyy =
R2

0

2M
(57)

if initially filaments were, in average, in equilibrium.
In the present oscillatory flow corresponding to Eqs. (7) and

(19),

β̇ = ∂V
∂x
= −αU0

H
( x

H
)
α−1

sinωt. (58)

Then, Eq. (54) is solved with the following initial condition:

t = 0, Λxy = 0. (59)

Using Eqs. (58) and (59), the solution of Eq. (54) takes the form

Λxy = −
αU0

Hα xα−1 R2
0θ

2M(ω2θ2 + 4)(2 sinωt − ωθ cosωt + ωθe−2t/θ).
(60)
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TABLE I. Experimental details.

Filament 1 3 4 5 7 8 9 10 11 13 14

R0 (μm) 12.7 22.0 36.0 57.7 17.7 23.6 12.7 18 12.7 28.6 26.2
d0 (nm) 134 128 142 151 112 144 116 119 132 109 112
U0 (μm/s) 132 168 934 157 209 188 60 133 316 74 151
x/H 0.74 0.82 0.52 0.17 0.31 0.13 0.34 0.20 0.80 0.23 0.18
f (1/s) 0.12 0.63 0.52 0.12 0.25 0.25 0.27 0.27 0.64 0.26 0.27
β̇max (1/s) −2.11 −3.81 −4.14 −0.02 −0.16 −0.01 −0.07 −0.02 −6.59 −0.02 −0.02

VI. COMPARISON WITH EXPERIMENTS

The available data from experiments and the correspond-
ing details are listed in Table I, where f = ω/(2π), d0 = 2a0

is the filament diameter, and β̇max is the maximum shear rate
in time at a distance X from the microchannel centerline. The
analysis carried out under the same conditions (in terms of
temperature and medium solution) as during the motion on
hydrogel filaments under oscillatory flow allowed the determina-
tion of the average value of the diameter of hydrogel filaments
(126 ± 36 nm).9

In Table I, R0 should be the magnitude of the ensemble-
averaged tail-to-head vector at equilibrium configuration of the fila-
ment, i.e., is, essentially, the gyration radius of its coil. As an estimate,
the magnitude of the tail-to-head vector in the initial orientation
(at t = 0) is taken as R0 for each filament. Direct measurement
of the elongation modulus on a macroscopic hydrogel yielded a
value of 20 kPa.10,20 On the other hand, the Young’s modulus
was determined as E = 2 kPa by experimentally studying the flow
effect on filaments fixed to the channel wall.10 The calculation
based on the cosine-correlation method yielded a similar order
of magnitude.10 Accordingly, the value of E = 2 kPa is adopted
here.

The filament diameter is found using the value of E = 2 kPa and
the persistence length from the following relation:10,20

d0 = 2a0 = (64kBTLP

πE
)

1/4
, (61)

where kB is Boltzmann’s constant, T is temperature in K, and LP is
the persistence length. On this basis, it was calculated that the val-
ues of the hydrogel filament diameters, which were then used in
the models that are the subject of this article, were in the range of
105 nm–165 nm, which coincides with the data obtained using AFM
scanning.

The filament dynamics in the experiment were recorded in the
oscillatory flow. The filament profile is distinctly visible at stopped-
flow conditions only, whereas throughout the transient flow stage,
only in a few cases, the filament was distinctly visible. The exper-
imental trials in which the filament was located at approximately
identical distance from the microchannel axis can be lumped to find
the ensemble-averaged values of Λxy. Additionally, the cases that
have frequency close to each other are selected for averaging. In
Figs. 8(a) and 8(b), the experimental data correspond only to the dis-
crete stopped-flow moments: i.e., to ωt = πn (n is an integer). They
are compared with the theoretical predictions for the entire time of
the experiment. The experimental average values of Λxy are close to

FIG. 8. (a) Average Λxy found using the data for filaments 7 and 9 in Table I. Theoretical prediction given by Eq. (60) is based on the following parameter values:
R0 = 17.7 μm, E = 2 kPa, d0 = 112 nm, U0 = 209 μm/s, X/H = 0.31, and f = 0.25 1/s. (b) Average Λxy found using the data for filaments 10, 13, and 14 in Table I.
Theoretical prediction given by Eq. (60) is based on the following parameter values: R0 = 28.6 μm, E = 2 kPa, d0 = 109 nm, U0 = 74 μm/s, X/H = 0.23, and f = 0.26 1/s.
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zero in all cases, and a more detailed comparison with the predicted
data is impossible as the experimental results are available for only
the stopped-flow moments.

Figure 9 details the comparison of the theoretically predicted
⟨Λxy⟩ with the stopped-flow data. In Eq. (60), at the stopped-flow
moments (ωt = πn), the first term on the right vanishes. For the time
of the order of 1 s, the third exponential term on the right in Eq. (60)
practically vanishes too. For the specific case (R0 = 17.7 μm, E = 2
kPa, d0 = 224 nm, U0 = 209 μm/s, X/H = 0.31, and f = 0.25 1/s),
θ = 0.3 s [cf. Eq. (49)] and ω = 1.6 s−1 at the stopped-flow moments
(ωt = πn) Λxy = ±4.08 × 10−13 m2 compared to the peak value of
Λxy = ±1.8 × 10−12 m2, as shown in Fig. 9. It should be emphasized
that a non-zero Λxy value at the stopped-flow moments revealed by
the theory stems from the Brownian diffusion contribution.

Filaments 5, 10, and 13 are visible in the transient flow, and the
results are depicted in Fig. 10(a). Moreover, in Figs. 10(b) and 10(c),
the transient experimental values of Λxy averaged for filaments 10
and 13 (subjected to approximately the same frequency) are com-
pared with the theoretical prediction for ⟨Λxy⟩. For filament 5, the
frequency of flow is significantly different; hence, it is not used for
averaging (cf. Table I).

FIG. 9. Theoretical prediction of ⟨Λxy⟩ given by Eq. (60) is based on the follow-
ing parameter values: R0 = 17.7 μm, E = 2 kPa, d0 = 224 nm, U0 = 209 μm/s,
X/H = 0.31, and f = 0.25 1/s.

FIG. 10. (a) Transient values of Λxy for filaments 5, 10, and 13 in Table I vs time. (b) The values of ⟨Λxy⟩ vs time found using the data for filaments 10 and 13 in Table I.
Theoretical prediction given by Eq. (60) is based on the following parameter values: R0 = 28.6 μm, E = 2 kPa, d0 = 109 nm, U0 = 74 μm/s, X/H = 0.23, and f = 0.26 1/s. (c)
The theoretical and experimental data in this panel are shown in different scales: for the theory—on the right side and for the experiment—on the left.
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FIG. 11. (a) Effect of the filament Young’s modulus on the theoretical prediction of Eq. (60). The following parameter values are used: R0 = 20.0 μm, d0 = 100 nm,
U0 = 100 μm/s, X/H = 0.25, and f = 0.25 1/s. The inset shows the zoomed-in view of the result for the larger values of E. (b) Effect of the filament diameter on the theoretical
prediction of Eq. (60). The following parameter values are used: R0 = 20.0 μm, E = 2 kPa, U0 = 100 μm/s, X/H = 0.25, and f = 0.25 1/s. The inset shows the zoomed-in view
of the result for the larger diameters. (c) Effect of the value of R0 on the theoretical prediction of Eq. (60). The following parameter values are used: d0 = 100 nm, E = 2 kPa,
U0 = 100 μm/s, X/H = 0.25, and f = 0.25 1/s. The inset shows the zoomed-in view of the result for smaller R0.

Furthermore, the effect of such physical parameters as Young’s
modulus E, the filament diameter d0, and equilibrium magnitude
of tail-to-head vector is investigated. Figure 11(a) shows the depen-
dence of ⟨Λxy⟩ on Young’s modulus, and Fig. 11(b) shows the depen-
dence of ⟨Λxy⟩ on the filament diameter. The amplitude of ⟨Λxy⟩
decreases with an increase in E or d0. It is seen that the magnitude
of ⟨Λxy⟩ is quite sensitive to the diameter of the filament d0. This
is important as the experimentally derived value of d0 is dependent
on such physical parameters as Young’s modulus E and persistence
length Lp; cf. Equation (61). Hence, the inaccuracies in measure-
ments of E and Lp, which are far from being straightforward,10,20

affect the theoretically predicted values. The effect of R0 can be sig-
nificant: indirectly through the value of θ and directly via Eq. (60).
For example, doubling the value of R0 results in an order of magni-
tude increase in the value of ⟨Λxy⟩ in Fig. 11(c). Note that a potential
increase in the value of R0 is limited by the maximum length of the
filament, which is around 40 μm in most cases. Additionally, the
filament location (X/H) and the centerline velocity U0 have direct

influence on the magnitude of ⟨Λxy⟩, as shown in Eq. (60). Specifi-
cally, if the value of X/H increases by a factor γ, i.e., becomes γ(X/H),
then the value of ⟨Λxy⟩ changes by the factor γα−1. Similarly if the
value of U0 changes by a factor δ, i.e., becomes δU0, the value of
⟨Λxy⟩ changes proportionally to δ⟨Λxy⟩. Experimentally, it is dif-
ficult to control and measure all the above-mentioned parameters
simultaneously, which can cause the disagreement of the predic-
tions with the data, as in Fig. 10(c). Additional future experiments
would be required to obtain more accurate values of these param-
eters. In addition, measurement of Young’s modulus and diameter
of the hydrogel filament could require an independent experimental
method because relying on a single method could lead to significant
inaccuracies.10,20

VII. CONCLUSION
In this work, the dynamics of a Brownian co-electrospun nano-

filament is studied experimentally, numerically, and theoretically.
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The individual filament dynamics is simulated numerically using
the novel model proposed in this work. The filament orientation,
stretching due to flow, and coiling due to Brownian motion are fully
revealed by the numerical predictions. A novel theoretical model
describing the evolution of the ensemble-averaged orientation–
deformation tensor in an oscillatory flow is developed. The results
are compared with the filament evolution observed in the limited
available experiments. The theoretically predicted values differ from
the experimentally observed ones by two orders of magnitude, which
stems from multiple uncertainties in the parameters involved. Nev-
ertheless, the model does show predictions qualitatively similar to
those of the averaged experimental data.
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