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Decomposing Noise in Biochemical Signaling Systems Highlights the Role
of Protein Degradation
Micha1 Komorowski,†* Jacek Miękisz,‡ and Michael P. H. Stumpf†*
†Division of Molecular Biosciences, Imperial College London, London, United Kingdom; and ‡Institute of Applied Mathematics and Mechanics,
University of Warsaw, Warsaw, Poland
ABSTRACT Stochasticity is an essential aspect of biochemical processes at the cellular level. We now know that living cells
take advantage of stochasticity in some cases and counteract stochastic effects in others. Here we propose a method that allows
us to calculate contributions of individual reactions to the total variability of a system’s output. We demonstrate that reactions
differ significantly in their relative impact on the total noise and we illustrate the importance of protein degradation on the overall
variability for a range of molecular processes and signaling systems. With our flexible and generally applicable noise decompo-
sition method, we are able to shed new, to our knowledge, light on the sources and propagation of noise in biochemical reaction
networks; in particular, we are able to show how regulated protein degradation can be employed to reduce the noise in biochem-
ical systems.
INTRODUCTION
Living cells need to constantly adapt to their changing envi-
ronment. They achieve this through finely honed decision-
making and stress response machineries that regulate and
orchestrate the physiological adaptation to new conditions.
In all studied genomes, a large number of proteins have as
their primary function the transfer and processing of
information. Such proteins are linked through a host of
different mechanisms into biochemical circuits that perform
a variety of information processing tasks including storage,
amplification, and integration of, and marshalling the
response to, environmental and physiological signals (1).
The functioning of these information-processing networks
depends on thermal or probabilistic encounters between
molecules, resulting in a distortion of transferred informa-
tion that is best understood as noise. Each reaction in the
information processing machinery leads to an inevitable
loss of information (2). Therefore, cell functions do not
only rely on the necessity to make good decisions, but also
on appropriate ways to cope with the uncertainties arising
from the noisy signal transmission. To deal with the latter
type of difficulty, we believe, evolution equipped cells
with reliable signal transduction systems by using less noisy
reactions or reaction configurations where needed (3).

The question which molecular species or parts of a
network contribute most of the variability of a system or
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are responsible for most of the information loss has there-
fore attracted much attention in recent years. Numerous
studies have analyzed noise in signaling networks in detail
(4,5) and decomposed the noise into contributions attribut-
able to fluctuations in mRNA and protein levels (6–11).
Although many of these studies afford detailed and
nontrivial insights into the origins of stochasticity, in total
they provide us with a patchwork of different theoretical
analyses: to our knowledge, a robust and sufficiently general
mathematical framework to study this problem has been
lacking. The lack of a more general formalism, has for
example, led to repeated analyses of the roles of transcrip-
tional and translational processes, whereas comparatively
little attention has been paid to, e.g., the roles of activation
and degradation steps in the stochasticity of biological
signaling dynamics.

Here we present a unified theoretical perspective that
allows us to calculate contributions of individual reactions
to the total variability of the outputs of biochemical systems.
This enables us to identify the origins of cell-to-cell vari-
ability in dynamical biochemical systems that allow us to
pinpoint—if warranted—individual reactions. We derive
a modified fluctuation-dissipation theorem that enables us
to determine how much of the total variance results from
each of the system’s reactions. We then obtain some unex-
pected but general rules governing the noise characteristics
of biochemical systems. In particular, we shall show that in
an arbitrary system with a sufficiently large number of
molecules, degradation of the output (e.g., a reporter protein
or a transcription factor) makes a (and frequently the) major
contribution to the total variance of the system: the
variance contribution of this single reaction equals at least
half of the output’s mean (i.e., contribution to the Fano
factor is R0.5). More specifically, for the important class
of open conversion systems, exactly half of the variance
derives from the degradation step of the output signal. These
http://dx.doi.org/10.1016/j.bpj.2013.02.027
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results demonstrate that some reactions may be responsible
for higher information loss than others; but our results also
reveal that cells have the option of optimizing biochemical
network structures to avoid the noisiest reactions if neces-
sary. Based on these results, we propose a mechanism of
controlled protein degradation based on a positive feedback
that, combined with negative feedback on protein produc-
tion, allows for an arbitrary reduction in the noise resulting
from protein degradation.

Below we first introduce the general framework for
modeling chemical reactions and derive a new, to our
knowledge, method to decompose the noise in a biochemical
system into contributions from different individual reac-
tions. Furthermore, two general properties governing noise
are presented. Finally, we use biological examples of signal
transduction systems to provide novel, to our knowledge,
insights into the origins of variability. In particular, we
decompose the variance of the outputs of linear transduction
cascades and Michaelis-Menten enzyme kinetics.
RESULTS

Mathematical decomposition of molecular noise

We consider a general system of n chemical species (12)
inside a fixed volume with x ¼ (x1,.,xn)

T denoting the
number of molecules. The stoichiometric matrix

S ¼ �
sij
�
i¼ 1;2;.;n; j¼ 1;2;.;r

describes changes in the population size due to r different

reaction channels, where each sij describes the change in
the number of molecules of type i from xi to xi þ sij caused
by the jth. The probability that the jth reaction occurs during
the time interval [t,t þ dt) equals fj(x,t)dt, where the fj(x,t)
values are called the transition rates. This specification
leads to a Poisson birth-and-death process described by
the stochastic equation (13),

xðtÞ ¼ xð0Þ þ
Xr

j¼ 1

S$jNj

0
@Z t

0

fjðxðsÞ; sÞds
1
A; (1)

where Nj are independent Poisson processes with rate 1.

Unfortunately, it is in general technically difficult to

develop an analytical framework using the Poisson birth-
and-death process’s formalism of Eq. 1, and the linear noise
approximation (LNA) (12,14) offers a reliable alternative.
Here, we show that the LNA allows us to calculate the
contributions of individual reactions to the total variability
of a biomolecular system, and illustrate how we can express
the existing methodologies of noise decomposition (6–11)
in a unified and more generally applicable framework.

The LNA allows us to model stochastic systems using
stochastic differential equation which depend on Wiener
processes, (Wj(s)), instead of Poisson processes, (Nj(s))
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(12,14–16). It is valid for systems with a sufficiently large
number of interacting molecules (14) and therefore imposes
a limitation on the applicability of our method. Validity of
the approximation is discussed in the further section. In
the LNA the system’s state, x(t), is decomposed into a deter-
ministic part 4(t) and a stochastic part x(t),

xðtÞ ¼ 4ðtÞ þ xðtÞ: (2)

Here 4(t) and x(t) are described by the deterministic and

stochastic differential equations, respectively. The contribu-
tions from the noise are all subsumed in x(t), and we can
solve for this (see the Experimental Methodology). Once
we have this solution we can calculate the variance in the
output, denoted here by S(t), and in the Experimental
Methodology we show that this can be written as

SðtÞ ¼ Sð1ÞðtÞ þ.þ SðrÞðtÞ; (3)

where S(i)(t), for i¼ 1,.,r, is the contribution to the overall

system noise (see Fig. 1 A) that results from the ith reaction.
This is a perhaps surprisingly simple relationship which
holds generally and which allows us to identify those reac-
tions that contribute most to the overall noise in biochemical
systems.
Simple signaling cascades and exact results

With the decomposition equation (Eq. 3), it is, in principle,
possible to attribute the contribution each reaction makes
to the output variability of a biochemical reaction system.
To illustrate what can be gained from such insights, we first
consider conversion and catalytic linear cascades before
moving on to more general reaction schemes. By catalytic
cascades we mean cascades where each chemical entity
catalyses creation of a downstream species. We start with
cascades of length 3 and decompose variances numerically
to study the contributions of individual intermediate reac-
tions. For conversion cascades (Fig. 1 B), where molecules
x1 are generated at a certain rate k1

þ and information is trans-
mitted to molecules x3 using (possibly reversible) conver-
sion reactions, we use two parameter sets corresponding to
fast and slow conversions to demonstrate that increasing
the rates of intermediate steps decreases their contribution
as might intuitively be predicted (Fig. 1 C). For catalytic
cascades (Fig. 1 D), increasing the rates of reactions at steps
2 and 3 (going from slow to fast) increases the contribution
of reactions at the bottom of the cascades (Fig. 1 E). For slow
dynamics during Steps 2 and 3, the relatively fast fluctua-
tions at the start are filtered out (low-pass filtering). If the
dynamics of all species occur at similar timescales then these
fluctuation can efficiently propagate downstream.

Regardless of parameter values, Fig. 1, C and E, suggests
a special role of the output degradation reactions, which
appear to make dominant contributions to the overall noise.
As we will demonstrate below, this observation holds also
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FIGURE 1 (A) Ten illustrative output trajectories representing stochastic dynamics of a hypothetical system. The observed intensity (e.g., experimentally

measured fluorescence) exhibits stochastic dynamics, which results from each of the reactions present in the system. Equation 3 allows us to dissect the

total variability. Decomposition describes how much of the observed variability is generated by each of the involved reactions. On the right-hand side is the

probability distribution of system outputs, the variance of which is considered in our decomposition. (B) Three-step open conversion system with rates fj
for reactions j ¼ 1,., 6 have the form f1 ¼ kþ1, f2 ¼ kþ2 x1, f3 ¼ kþ3 x2, f4 ¼ k�4 x1, f5 ¼ k�5 x5, and f6 ¼ k�6 x6. (C) Variance contributions of the

different reactions in the three-step linear conversion system with parameters kþ1 ¼ 50, kþ2 ¼ 1, kþ3 ¼ 1, k�4 ¼ 1, k�5 ¼ 1, and k�6 ¼ 1 or the slow

conversion example, and kþ1 ¼ 50, kþ2 ¼ 10, kþ3 ¼ 10, k�4 ¼ 1, k�5 ¼ 1, and k�6 ¼ 1 for the fast conversion case; all rates are per hour. (D) Three-step

open conversion system with rates fj as in panel B. (E) Variance contributions of the different reactions in the three-step linear catalytic cascade with

parameters kþ1 ¼ 50, kþ2 ¼ 0.1, kþ3 ¼ 0.1, k�4 ¼ 1, k�5 ¼ 0.1, and k�6 ¼ 0.1, for slow catalysis, and kþ1 ¼ 50, kþ2 ¼ 10, kþ3 ¼ 10, k�4 ¼ 1,

k�5 ¼ 10, and k�6 ¼ 10 for fast reactions.
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for very generic signaling systems; we can even prove two
general propositions that assign surprisingly substantial
contributions to the overall output noise to the reaction
that describes the degradation of the output signal and these
results can be made mathematically precise and hold for the
Chemical Master Equation without the LNA (see the Exper-
imental Methodology for proofs and details). Under suitably
general conditions (such as the single stable equilibrium
Biophysical Journal 104(8) 1783–1793
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state of the corresponding deterministic system) we have the
following two results:

Proposition 1

If xn is an output of a general system being produced at rate
not dependent on itself and degraded in the rth reaction at
rate kn

�xn, then the contribution of the output’s degradation
to the total variance of the output is equal to the half of its
mean; more specifically,�

SðrÞ�
nn

¼ 1

2
hxni: (4)

Proposition 2

Now consider again a general system, but make the further
assumption that it is an open conversion system where reac-
tion rates are of mass action form and that only three types
of reactions are allowed:

Production from source : B ���!kþ
i

xi;

k�
i

Degradation : xi ����! B;

kijxi

Conversion : xi ����! xj:

In this special case of a conversion pathway, regardless of

parameter values, length of the pathway, and degradation
of intermediates, the degradation of the output xn, rather
unexpectedly, contributes exactly half of the total variance
of the system’s output,�

SðrÞ�
nn

¼ 1

2
½S�nn; (5)

where r is again the index of the output’s degradation

reaction.

These propositions can be understood as balancing the
contributions made to the overall noise by the production
and degradation reactions. As exemplified in the next
section, at equilibrium the fluctuations from birth and death
processes must be equal. If the variance of the output is
greater than the mean, this statement translates into Propo-
sition 1, in case of the variance equal to the mean into the
statement that half of the noise is attributable to the degra-
dation. By hindsight the relative contributions of production
and degradation steps to the overall variability in the output
noise may seem obvious. However, to our knowledge, this
question had previously not been asked, and instead the
literature is replete with discussions of the impact of, e.g.,
transcription and translation on biomolecular noise.

The variance is, of course, only one measure of vari-
ability. The Fano factor, F¼ s2/m (where m is the population
average of the random variable under consideration), is
a closely related measure and our analysis in Propositions
Biophysical Journal 104(8) 1783–1793
1 and 2 yields a unified, parameter-free statement, which
holds generally for the Chemical Master Equation without
the LNA assumption,

FðrÞ
n ¼ 1

2
; (6)

for any general reaction systems with linear rate of output

production (i.e., Propositions 1 and 2).

The decomposition can be directly inserted into the equa-
tion for the Fano factor. Hence Propositions 1 and 2 can be
expressed in a unified way in terms of the Fano factor as for
open conversion systems: ½SðrÞ�nn ¼ hxni: Thus, the Fano
factor associated with the system output will be approxi-
mately equal to 1/2 for many signaling systems.

For the coefficient of variation, cv¼ s/m, a further popular
measure of divergence, our decomposition can also be
applied but only yields numerical values for the standard
deviation,

s ¼
ffiffiffiffi
S

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð1ÞðtÞ þ.þ SðrÞðtÞ

q
:

Our observation is particularly interesting as open conver-

sion systems often offer good approximations to important
biochemical reactions such as Michaelis-Menten enzymatic
conversions or linear signal transduction pathways, to which
we return below; more intriguingly, perhaps, our results also
suggest that controlled degradation is an effective mecha-
nism to decrease the overall contribution to variation in
protein levels.
Michaelis-Menten enzyme kinetics

Michaelis-Menten kinetics are used to model enzymatic
types of biochemical reactions: enzyme molecules (E)
bind reversibly to substrate molecules (S) with the forward
rate constant k0 and the backward rate constant k1 to form
a complex (C), which then falls apart into the enzyme and
a product (P) at rate k2:

Eþ S#
k0

k1
C!k2 Eþ P:

To ensure existence of the steady state, we assume that
substrate molecules arrive at rate k and product molecules
b

are degraded at rate kd. At the unique steady state, the
system is well approximated by a linear conversion cascade.
Our theory therefore predicts that half of the noise in
Michaelis-Menten kinetics operating in its linear range
(abundant enzyme) is generated by degradation of the
product molecules. In Fig. 2 we have calculated the contri-
butions of each of the four reactions to the variance of all
four species for the full model (without the monomolecular
approximation). The contribution of the output degradation
is as predicted by the monomolecular approximation. Note
that for each molecular species there is a balance between
the contributions to their respective variances resulting



FIGURE 2 Variance decomposition for the four

species of the Michaelis-Menten kinetics model.

The following parameters were used: k0 ¼ 0.1,

k1 ¼ 50, k2 ¼ 1, kb ¼ 20, and kd ¼ 0.1. Number

of enzyme molecules was set to 50. All rates are

per hour.
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from the incoming and outgoing reactions. This simply
reflects that we can treat each molecular species as a poten-
tial output, whence our statements from above apply.
Protein expression

The canonical example of a linear catalytic pathway, which
has been widely explored in the context of noise decompo-
sition (2,6,7,9–11), is gene expression. It can simply be
viewed as the production of RNA (x1) from source (DNA)
at rate k1

þ, and production of protein (x2) in a catalytic reac-
tion at rate k2x1, together with first-order degradation of both
species at rates k1

�x1 and k2
�x2. Here we use this model to

demonstrate the applicability of our framework by revisiting
earlier studies of Paszek (9), Paulsson (10), and Rausen-
berger and Kollman (11), which reported noise contribu-
tions arising at each level of expression (promoter state
fluctuations, transcription, translation). Proposition 1 states
that the part of the variance resulting from the protein
degradation equals half of the mean protein level,
and Eq. 3 allows us to derive the complete decomposition
of the protein, x2, variance

Sx2 ¼
1

2
hx2i|fflffl{zfflffl}

prot: degradation

þ 1

2
hx2i|fflffl{zfflffl}

translation

þ 1

2

kphx2i
gr þ gp|fflfflfflfflfflffl{zfflfflfflfflfflffl}

mRNA degradation

þ 1

2

kphx2i
gr þ gp|fflfflfflfflfflffl{zfflfflfflfflfflffl}

transcription

: (7)

In Fig. 3 A, we consider a slightly more general model,

where we also consider activation of the protein through
phosphorylation and corresponding deactivation through
dephosphorylation; both kinase and phosphatase are
assumed to be abundant and their respective activities
assumed to be constant. Fig. 3, B–D, exemplifies how the
noise in the output (active protein) changes as dephosphor-
ylation gains in importance. Increasing the rate of dephos-
phorylation slightly decreases the relative contribution
made to the output signal that results from transcription
(R1), translation (R3), and mRNA and (inactive) protein
degradation (R2 and R4, respectively); these decreases are
compensated for by a marked increase to the system output
noise resulting from the phosphorylation. This, too, is in line
with intuition suggesting that increasing later rates must
decrease the contribution resulting from earlier reactions.

To illustrate applicability of this framework further, we
also investigate two extensions of the conventional protein
expression model:

First, we assume that the promoter can fluctuate between
on- and off-states (similarly to Paszek (9) and Rausenberger
and Kollman (11)) and calculate contributions for different
timescales of these fluctuations, but focusing on protein
levels per se (rather than just active protein).

Second, we assume that the protein is a fluorophore that
undergoes a two-step maturation process before it becomes
visible (folding and joint cyclization with oxidation).
Fig. 3 E presents contributions for fast and slow promoter
kinetics, showing that fast fluctuations are effectively
filtered out (contributing 10%) but remain a substantial con-
tributor when they are slow (contributing 40%).

Variability in gene expression is often measured by means
of fluorescent proteins that undergo maturation before
becoming visible for detection techniques; but the process
of maturation (17) itself is subject to stochastic effects,
and can thus contribute significantly to the observed vari-
ability. We used typical parameters (17,18) for fast and
slow maturing fluorescent proteins and found that matura-
tion contributed 4 and 25%, respectively (Fig. 3 F) to the
overall variability; here our method allows for the rigorous
quantification of the effect’s single reactions, compared
to previous analyses of steady-state statistics which were
only able to consider the total noise levels (19,20).
Biophysical Journal 104(8) 1783–1793
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FIGURE 3 (A) Illustration of a protein expression and activation system with seven reactions; mRNA, protein, and activated protein are described in terms

of their production, degradation, and potentially reversible (de-)activation through (de-)phosphorylation through kinases and phosphatases. (B) Variance

decomposition of the noise in the output (active protein) when activation is not reversible. (C) Output variance decomposition for slow dephosphorylation.

(D) Output variance for decomposition for fast dephosphorylation. For panels A–C, we use the following parameters: kþ1 ¼ 40, k�1 ¼ 2, kþ2 ¼ 2, and

k�2 ¼ 1; for (A) kphos ¼ 0.5 and kdephos ¼ 0; for (B) kphos ¼ 0.5 and kdephos ¼ 0.1; for (C) kphos ¼ 0.5 and kdephos ¼ 1. (E) Contributions to the variance

of the reactions involved in gene expression with fluctuating promoter states; here the transcription rate is modeled as kþ1 ¼ ðVy=HÞ=ð1þ y=HÞ, and y denotes
the stationary solution of dy ¼ ðb� gyÞdt þ ffiffiffiffiffiffi

2g
p

dW. The following parameters were used: V ¼ 100, H ¼ 50, kþ2 ¼ 2k�1 ¼ 0.44, and k�2 ¼ 0.55. For fast

promoter fluctuations we used b¼ 50 and g¼ 1, and for slow promoter fluctuations we used b¼ 0.5 and g¼ 0.01. (F) Variance contributions of the reactions

involved in fluorescent protein maturation model for slowly (left) and quickly (right) maturing proteins (slow and fast proteins). The following parameters

were used: kþ1 ¼ 50, k�1 ¼ 0.44, kþ2 ¼ 2, and k�2 ¼ 0.55. For slow maturation (average maturation timez 5 h) we assumed folding and maturation rates to

be kf ¼ 0.2 and km ¼ 1.3, respectively. For fast maturation (average maturation time z 0.5 h) we set kf ¼ 2.48 and km ¼ 13.6. All rates are per hour.
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REDUCING THE CONTRIBUTION OF
DEGRADATION NOISE

Our mathematical results and examination of the examples
above demonstrate that the noise resulting from the degrada-
tion of the output of a biochemical reaction system accounts
for a substantial fraction of the output variability. An effec-
tive mechanism of noise suppression, therefore, should take
this observation into account. One possibility to control
noise attributable to the degradation reaction is to control
its rate using a positive feedback loop. The consequences
of a controlled degradation had previously only been dis-
cussed in the context of biochemical noise and compared
with the negative feedback loop on production (21).

Here we propose the simple extension of a positive feed-
back loop on the degradation reaction, taking into account
that our propositions arise on the grounds of the equilibrium
noise balance between production and degradation. In any
system at equilibrium the rates of the production and degra-
dation reactions have to equal. The noise resulting from
each of these reactions, as directly related to the rate, can
be attenuated only if both equilibrium rates are simulta-
neously reduced. Therefore, combination of the positive
feedback loop (21) on degradation with the negative feed-
back on production is more efficient than either of these
loops separately. This is not only because the control is
tighter but, importantly, also because intensity of these reac-
tions at equilibrium is reduced.
Biophysical Journal 104(8) 1783–1793
For illustration and simplicity we consider a simple birth-
and-death process, but the same mechanism is valid for
general systems considered in Proposition 1. Here mole-
cules x arrive at rate kþ and degrade at rate k�x. In the
LNA this process can be expressed by the following
stochastic differential equation:

dx ¼ 	
kþ � k�xðtÞ
dt þ ffiffiffiffiffi

kþ
p

dW1|fflfflfflfflffl{zfflfflfflfflffl}
birth noise

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�hxðtÞi

p
dW2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

death noise

: (8)

The stationary distribution of this system is Poisson with the
mean hxi ¼ kþ=k�: Therefore, in the stationary state, death

events occur at rate k�hxi, which must be equal to the birth
rate kþ. The noise terms in the above equation are equal at
stationarity, indicating that contributions of birth-and-death
reactions are equal. It is straightforward to verify that the
decomposition

S ¼ 1

2
hxi|ffl{zffl}

birth noise

þ 1

2
hxi|ffl{zffl}

death noise

(9)

holds indeed.

Now suppose that the births and deaths rates are

denoted by f(x) and g(x), respectively, and the system is
described by

dx ¼ ðf ðxÞ�gðxÞÞdt þ
ffiffiffiffiffiffiffiffiffiffiffiffi
f ðhxiÞ

p
dW1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

birth noise

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
gðhxiÞ

p
dW2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

death noise

: (10)
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At equilibrium, we have f(hxi) ¼ g(hxi), and we can calcu-
late that contribution of degradation as

SðdeathÞ ¼
1

2
gðhxiÞ

�vf ðhxiÞ
vx

þ vgðhxiÞ
vx

: (11)

For f(x) ¼ k, g(x) ¼ gx, this reduces, of course, to the
previously discussed case SðdeathÞ ¼ 1=2hxi. Nevertheless,
if functions f and g are of Hill and Michaelis-Menten types,
respectively, then the contribution is related to the mean
through functions f and g, and can be reduced to an arbitrary
A

B

low level according to the above equation. Unlike in the
single feedback loop mechanism (21) any decrease in the
contribution compared to the mean results here from two
sources: the reduced flux through both reactions, repre-
sented by the numerator in Eq. 11); and the autoregulatory
control, represented by the derivatives in the denominator.
The effects of the combined production and degradation
control loops are depicted in Fig. 4.

Recent experimental work on mRNA and protein degra-
dation provides the evidence that degradation indeed
exhibits Michaelis-Menten type kinetics (22,23), instead
of the linear first-order kinetics that are usually used
to model degradation. Although the above mechanism
FIGURE 4 (A) The effect of noise reduction result-

ing from regulated degradation. The line styles

describe production rate f(x) (dotted line), degradation

rate (dashed line) and density of stationary distribu-

tion of x (solid line). (Blue) f(x) ¼ 1/2 and g(x) ¼
0.025x. (Black) f(x) ¼ 1/(1 þ(x/20)5) and g(x) ¼
(x/20)5/(1 þ (x/20)5). (Green) f(x) ¼ 1/(1 þ(x/19)50)

and g(x) ¼ (x/21)50/(1 þ (x/22)50). Plotted densities

are kernel density estimates based on 10,000 indepen-

dent stationary samples generated using Gillespie’s

algorithm (27). (B) Ten trajectories sampled for

unregulated degradation (top, corresponding to blue

curve in panel A), regulated (middle, corresponding

to black in panel A), and tightly regulated (bottom,

corresponding to green in panel A); on the right-

hand side of the trajectories are the probability distri-

butions over system outputs.

Biophysical Journal 104(8) 1783–1793
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provides theoretical prescription for noise reduction, the
biophysical implementation of functions f and g may need
additional auxiliary reaction steps and reactants, and these
additional reactions will contribute new sources of stochas-
ticity. These sources, however, can be driven arbitrarily low
by assuming that the auxiliary molecular species are present
in very high numbers (2). Therefore identification of noisy
reactions is important for our understanding of how (and
if) resources might have been invested to achieve low noise
levels in molecular systems.
VALIDITY OF THE OBTAINED RESULTS

Conclusions of Propositions 1 and 2 followed by the unified,
parameter-free statement Eq. 6 hold in the setting of Markov
processes modeled by the Chemical Master Equation. These
statements are therefore limited only by the linear form of
the degradation rate.

The developed noise decomposition method is based on
the LNA and its applicability is strictly related to its range
of validity. LNA is appropriate to model systems with large
number of reacting molecules and is an analogy of the
central limit theorem for Markov jump processes defined
by The Master Equation. The main condition that ensures
validity of the LNA is large size of studied systems. In small
systems the approximation will begin to break down,
because the count noise will result in the covariance of
variables greater than that predicted by the LNA. Moreover
in the nonlinear systems, the deterministic variable in the
LNA is not exactly the mean value of the stochastic process
it approximates. In bistable systems for instance the LNA
will arrive at one stable point, but the mean will be affected
by time spent at the other stable point. Although the LNA
was originally designed to analyze systems at a steady state,
it can also be applied out-of-steady-state given that the
Jacobian of the deterministic equation has negative eigen-
values. A recent study (24) provides a new insight on
LNA’s range of validity and supports its applicability to
systems studied in the article.
DISCUSSION

The noise decomposition method introduced here allows us
to investigate in detail where and how noise enters biochem-
ical processes, is propagated through reaction systems, and
affects cellular decision-making processes. We have shown
analytically that in a wide class of systems the signal degra-
dation reaction contributes half of the noise in a system’s
output regardless of parameter values. Our approach is, of
course, much more widely applicable and does allow us to
disentangle the different contributions to system output re-
sulting from the different reactions in a system. Here we
have shown (especially easy to see in Michaelis-Menten
kinetics and the protein expression examples shown in
Figs. 2 and 3, respectively) that changing the rates of indi-
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vidual reactions affects also the overall contributions stem-
ming from the remaining reactions.

Set against these system-level properties of noise the wide
applicability of Propositions 1 and 2 is really rather remark-
able; to the best of our knowledge this has not been noted
before. From the illustrative examples discussed above it
is clear that even if the premises of Propositions 1 and 2
do not hold exactly, they still provide a rule of thumb (i.e.,
that the Fano factor of degradation is typically 1/2) as to
how the noise in a system output—be it protein expression
levels, protein activity (in particular transcription-factor
activity), or metabolite concentrations—is affected qualita-
tively by the respective contributions resulting from produc-
tion and degradation steps. In particular, the exalted role
played by degradation has thus far not attracted the interest
that it probably deserves.

This has indeed been the central biological result that we
found and report here: the crucial role of degradation of the
signal on the overall noise levels. The relevance of degrada-
tion has been observed before in the context of stochastic
biochemical dynamics (7,21) but their exact contribution, to
our knowledge, had not previously been quantified. In
general, it is difficult to think of an experiment that would
allow us to measure a contribution of any individual reaction
to the overall variability. However, for the degradation reac-
tion onepossibility is to construct a nondegradablefluorescent
protein and remove the fluorescent signal by photobleaching.
In such a system only arrival events are registered. The
comparison of the wild type noise with a nondegradable fluo-
rescent proteinmutant has the potential to reveal the contribu-
tion of the degradation reaction to the overall noise.

From our analysis emerge also means of controlling the
overall noise in protein expression levels, which will, among
other things, give rise to cell-to-cell variability among
genetically identical cells. Targeting proteins for pro-
teasomal degradation via polyubiquitination is an inherently
cooperative process and increasing cooperativity will
change, as shown in Fig. 4, the level of variability. In partic-
ular an increase—concomitant with an increase in the Hill
coefficient—will lead to a decrease of the noise in protein
expression; depending on the nature of the protein such
diminishing variability should also affect levels of heteroge-
neity among a population of cells. In comparison, however,
to phosphorylation dynamics that have been elucidated in
increasingly exquisite detail and at the level of individual
cells, the dynamics of polyubiquitination, to our knowledge,
have thus far not been characterized at single cell levels.

Our method allow for a more complete understanding of
previous findings on fluctuations in biochemical networks.
For instance the independent fluctuations in nodes of a large
class of metabolic networks (25) can be attributed in half to
the arrival and departure events. In the context of noise
suppression mechanism constituted by two feedback loops,
proposed here, it is interesting to ask if the noise limits
derived for feedback the loop on production (2) can be
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improved. Our results reveal that the experimental findings
of nonlinear degradation rates (23) may have consequences
for noisiness of biochemical networks and point out that
a complete picture of stochasticity in biochemical networks
must include experimental verification of stochasticity in
proteolytic processes.

The surprisingly high contribution is particularly impor-
tant as it may indicate potentially new therapeutic targets:
in humans and other sequenced organisms, certainly, the
repertoire of proteins involved in protein degradation, in
particular ubiquitin-ligases, is as rich and diverse as the
repertoire of proteins regulating their activation—the
kinases (and phosphatases). Thus targeting the degradation
of proteins appears as important to biological systems as
protein activation and offers an attractive and broad range
of new potential therapeutic targets. Quite generally, the
ability to dissect noise propagation through biological
systems does enable researchers better to understand the
role of noise in function (and evolution), and will also
enable synthetic biologists to either harness or dampen the
effects of noise in molecular signaling and response
networks.
EXPERIMENTAL METHODOLOGY

Mathematical derivation of noise decomposition

To define the contribution of the jth reaction (j¼ 1,.,r) to the variability of

x(t) we first define hx(t)i(�j) as the expectation of x(t) conditioned on the

processes N1(t),., Nj�1(t), Njþ1(t),., Nr(t), so that hx(t)i(�j) is a random

variable where timings of reaction j have been averaged over all possible

times, keeping all other reactions fixed. Therefore x(t) � hx(t)ij�j is

a random variable representing the difference between the native process

x(t) and a process with averaged timings of jth reaction. Now the contribu-

tion of the jth reaction to the total variability of x(t) is

SðjÞðtÞh
D�

xðtÞ � hxðtÞij�j

��
xðtÞ � hxðtÞij�j

�TE
; (12)

where h.i denotes the average over timings of all r reactions. This defini-

tion is similar to the one proposed in Eq. 11 to quantify the contributions of
promoter states and mRNA fluctuations, respectively, to the protein level

variability.

Unfortunately, in general, it is difficult (Eq. 11) to calculate or study

properties of Eq. 12 using a Poisson birth-and-death process framework

in Eq. 1. We note, however, that by using the LNA for the contributions

from Eq. 12, it can be very easily calculated.

In the LNA the system’s state, x(t), is decomposed into a deterministic

part 4(t) and a stochastic part x(t) described by the deterministic and

stochastic differential equations

4ðtÞ ¼ 4ð0Þ þ
Z t

0

S Fð4ðsÞ; sÞds; (13)

Z t
xðtÞ ¼ xð0Þ þ
0

Að4ðsÞ; sÞxðsÞds

þ
Xr

j¼ 1

S$jWj

0
@Z t

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fjð4ðsÞ; sÞ

q
ds

1
A;

(14)

respectively, and their coefficients are given by
Fð4; tÞ ¼ ðf1ð4; tÞ;.; frð4; tÞÞT (15)

and

fAð4; tÞgik ¼
Xr

j¼ 1

sij
vfjð4; tÞ
v4k

: (16)

The above framework presents a simple way to compute contributions S(j)t,

and here we demonstrate how the total variance can be decomposed into the

sum of individual contributions. To simplify notation, from now on we will

write A(t) and E(t) instead of A(4,t) and E(4,t), respectively.

We write the explicit solution for the process x as

xðtÞ ¼ Fð0; tÞxð0Þ þ
Z t

0

Fðs; tÞEð4; sÞdWðsÞ; (17)

and Eð4; tÞ ¼ S diagð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ð4; tÞÞ

p
;.;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðfrð4; tÞ
p Þ; where F(s,t) is the funda-

mental matrix of the nonautonomous system of ordinary differential

equations

dFðs; tÞ
dt

¼ AðtÞFðs; tÞ; Fðs; sÞ ¼ I: (18)

Now it is straightforward to verify that

hxðtÞij�j ¼ Fð0; tÞxð0Þ þ
Z t

0

Fðs; tÞEð�jÞðsÞdWðsÞ; (19)

where Eð�jÞðtÞ ¼ Sð�jÞEðtÞ; EðjÞðtÞ ¼ SðjÞEðtÞ; Sð�jÞ ¼ fsð�jÞ
lk gl¼1;::;n;k¼1;.;r ;

SðjÞ ¼ fsðjÞlk gl¼1;::;n;k¼1;.;r ; and

s
ð�jÞ
lk ¼



0 for k ¼ j
slk for ksj

s
ðjÞ
lk ¼



slk for k ¼ j
0 for ksj:

From Eqs. 17 and 19, we have

xðtÞ � hxðtÞij�j ¼
Z t

0

Fðs; tÞEðjÞðsÞdWðsÞ: (20)

With xðtÞ � hxðtÞij�j ¼ xðtÞ � hxðtÞij�j and the time derivative of hðxðtÞ�
hxðtÞij�jÞðxðtÞ � hxðtÞij�jÞTi, we obtain for S(j)(t)

dSðjÞ

dt
¼ AðtÞSðjÞ þ SðjÞAðtÞT þ DðjÞðtÞ; (21)

with

DðjÞðtÞ ¼ EðjÞðtÞ	EðjÞðtÞ
T : (22)

This is, of course, analogous to the fluctuation dissipation theorem,

with the exception that the diffusion matrix contains zeros at all

entries not corresponding to the jth reaction. Now the fact that the total

variance

SðtÞ ¼ �ðxðtÞ � hxðtÞiÞðxðtÞ � hxðtÞiÞT�
can be represented as the sum of individual contributions, Eq. 3,
SðtÞ ¼ Sð1ÞðtÞ þ.þ SðrÞðtÞ; (23)

results directly from the decomposition of the diffusion matrix

DðtÞ ¼ Pr
j¼1D

ðjÞðtÞ and the linearity of the equation for S(t), given by

the standard fluctuation dissipation theorem

dS

dt
¼ AðtÞSþ SAðtÞT þ DðtÞ: (24)
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Proof of Proposition 1

1. Interactions of xnwith other species imply that aij¼ 0 for i¼ 1,., n� 1,

and j ¼ n. Thus matrix A can be written as
A ¼
�

A 0

aT �k�N

�
:

2. Equation 23 implies that all elements of matrix D(r) are equal to 0 except

DðrÞ
nn ¼ kð�Þ

n hxni, therefore D(r) has the form

DðrÞ ¼
�
0 0

0 k�n
�
xn
��:

3. It is straightforward to verify that the n � n matrix

SðrÞ ¼
0
@ 0 0

0
1

2

�
xn
�
1
A (25)

satisfies the equation

ASðrÞ þ SðrÞAT þ DðrÞ ¼ 0: (26)

Proof of Proposition 2

In an open conversion systemSnn¼ hxni (see, e.g., Gadgil et al. (26)), there-
fore, from Proposition 1, we have Snn ¼ 2SðrÞ

nn :
Proof of Proposition 1 without the linear noise
approximation

Here we present the proof of Proposition 1 in the general setting of Markov

jump processes described by the Chemical Master Equation. Denote by z(t)

the birth process of the final product of our system of reactions, that is,

molecules of the nth type (i.e., the process counting the number of births

of n-molecules until time t). We assume that z(t) together with the degrada-

tion of n-molecules (the final r-type reaction that follows the Poisson

process with the intensity g) generates a stationary mean value. Assume

Dz ¼ z(s þ Ds) �z(s) is the random variable counting the number of

n-molecules born in the time interval [s,s þ Ds). If no birth events take

place outside [s,s þ Ds) the number of n-molecules at the time t is given

by the binomial random variable xn(t) with the probability of success

exp(�g(t – s)); and the following expressions for the conditional mean

and the variance of xn(t) hold:

hxnðtÞij�r ¼ expð�gðt � sÞÞDz;
��

xnðtÞ � hxnðtÞij�r

�2
�

¼ expð�gðt � sÞÞð1� expð�gðt � sÞÞÞDz:

j�r

Summing over all intervals in the limit of infinitely small [s,s þ Ds),

we get

hxnðtÞij�r ¼
Z t

0

expð�gðt � sÞÞdzðsÞ;

�� �2
� Z t
xnðtÞ � hxnðtÞij�r
j�r

¼
0

expð�gðt � sÞÞð1�expð�gðt�sÞÞÞdzðsÞ:

Now we average over reactions 1,.,r � 1 hidden in z(t) and get
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DD�
xnðtÞ�hxnðtÞij�r

�2E
j�r

E
¼
�Z t

0

expð�gðt � sÞÞð1�expð�gðt�sÞÞÞdzðsÞ
+

¼
�Z t

0

expð�gðt � sÞÞdzðsÞ
+

�
*Z t

0

expð � 2gðt � sÞÞdzðsÞ
+
:

By definition, the first is the mean of a process xn(t) with degradation rate g

and the second is the mean of a version of the process xn(t) with degradation

rate 2g. We have the Fano factor

FðrÞ
n ðtÞ ¼ 1�

*Z t

0

expð � 2gðt � sÞÞdzðsÞ
+

*Z t

0

expð � gðt � sÞ
+ :

In the stationary state, the mean of the process xn(t) with degradation rate g

is exactly twice of the mean of a version of the process xn(t) with degrada-
tion rate 2g, therefore

FðrÞ
n ¼ 1

2
in the limit t/N:
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