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Abstract. Bistable regulatory elements enhance heterogeneity in cell populations

and, in multicellular organisms, allow cells to specialize and specify their fate.

Our study demonstrates that in a system of bistable genetic switch, the noise

characteristics control in which of the two epigenetic attractors the cell population

will settle. We focus on two types of noise: the gene switching noise and protein

dimerization noise. We found that the change of magnitudes of these noise components

for one of the two competing genes introduces a large asymmetry of the protein

stationary probability distribution and changes the relative probability of individual

gene activation. Interestingly, an increase of noise associated with a given gene can

either promote or suppress activation of the gene, depending on the type of noise.

Namely, each gene is repressed by an increase of its gene switching noise and activated

by an increase of its protein-product dimerization noise. The observed effect was found

robust to the large, up to 5-fold, deviations of the model parameters. In summary, we

demonstrated that noise itself may determine the relative strength of the epigenetic

attractors, which may provide a unique mode of control of cell fate decisions.
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1. Introduction

Bi- and multi-stable regulatory elements play an important role in cell signaling by

introducing heterogeneity in cell populations and allowing cells in a multicellular

organism to specialize and specify their fate. Attractors of genetic networks can be

associated with distinct cell types achieved during cell differentiation [1, 2]. Although

multistationarity is not required for the emergence of co-existing phenotypes [3],

decisions between cell death, survival, proliferation or senescence are likely associated

with bistability. In prokaryotes multistability is regarded as an optimal strategy for

coping with varying environmental conditions [4].

In a single cell the relative occupancy of steady states is determined by their

relative stability, while at the population level it is additionally governed by growth

rates associated with particular steady states [5]. Intuitively, the relative strength of

the macroscopic steady states should be controlled by the “shape” of the epigenetic

landscape. Considering the epigenetic landscape as a potential energy landscape one

could expect that the stability of a steady state increases with the depth of the associated

potential well. The external stimulation that leads to the modification of the potential

influences the relative stability of the steady states and may promote state-to-state

transitions. Interestingly, noise itself was also found to be an important determinant

of the relative occupancy of the macroscopic steady states [6, 7, 8, 9]. As shown by

Vellela and Qian [6], in a bistable system the noise magnitude controls the probability

mass fraction in each of the two attraction basins. In the limit of zero noise, generically,

all probability mass concentrates in the vicinity of the most stable steady state [7].

Surprisingly, also the noise type (in addition to the noise magnitude) influences the

relative stability of the macroscopic steady states. Analyzing a single autoregulatory

gene by means of the chemical Langevin equation Frigola et al demonstrated that

additive and multiplicative noise assumptions lead to different effective potentials [8].

Recently, by considering arbitrary noise functions, we showed that any steady state can

become a global stochastic attractor for a particular choice of noise [7]. In a case of

a single autoregulatory gene, we found that when the gene switching noise dominates

the transcriptional/translational noise, the gene preferentially activates, while in the

opposite case the gene preferentially remains inactive [9].

In this study we will focus on the role of noise in the toggle switch regulation. A

toggle switch – a pair of mutual repressors – is considered as one of the most important

regulatory elements exhibiting bistability [10, 11, 12, 13]. Using a toggle switch a single

cell converts graded external stimuli into a binary answer expressing almost exclusively

one of the two competing repressors. At the population level the graded stimuli are

encoded by the fraction of cells expressing instantaneously the particular gene. Classical

examples of toggle switches include the lysis/lysogeny switch in λ phage [14, 15, 16],

several mitogen-activated protein kinase cascades in animal cells [17, 18, 19], and cell

cycle regulatory CI circuits in Xenopus laevis and Saccharomyces cerevisiae [20, 21].

Another example of a toggle switch in bacteria is a tetracycline resistance circuit in
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Escherichia coli.

A synthetic toggle switch in E. coli was constructed by Gardner et al [22]. It was

forced to flip between the steady states using a transient chemical or thermal induction.

The toggle was constructed using the Lac repressor (lacI ) in conjunction with Ptcr-2

promoter and either a PLs1con promoter in conjunction with a temperature-sensitive

λ repressor (cIts), or PLtetO-1 promoter in conjunction with Tet repressor (tetR). The

work of Gardner et al provides also a theoretical prediction of the conditions sufficient

for bistability. Bistability arises when at least one of the inhibitors represses the

expression of the competing gene with cooperativity greater than one. Later Lipshtat

et al showed that exclusive toggle switches may exhibit bistability even without a

cooperative binding [12]. In the exclusive switch, the two promoter sites overlap and thus

two repressors cannot be bound simultaneously. In the simplest of the three considered

models, despite the fact that the deterministic approximation predicts a single steady

state, the stationary probability distribution (SPD) was found bimodal. The additional

assumptions that either bound repressors may degrade, or that free repressor proteins

may form inactive heterodimers led to bistable models with two macroscopic stable

steady states [12].

Cells have evolved to survive in fluctuating environments taking advantage of the

stochasticity present in the process of gene regulation. State-to-state transitions in a

toggle switch are enabled by noise, whose magnitude controls switching rates [23, 24].

In a rapidly changing epigenetic landscape high noise is favorable as it allows for fast

adaptation. It was shown theoretically that in a varied environment bacteria maximize

fitness by tuning noise with the frequency of the environment fluctuations [25]. In

the system of mutual repressors, the overall states stability can be controlled by noise

associated with a mode of repression. As shown by Komorowski et al translational

repression contributes greater noise to gene expression than transcriptional repression

[26]. Warren et al demonstrated that overlapping upstream gene regulatory domains

increases toggle stability i.e. decreases state-to-state transitions rates [27]. In general,

the transitions times increase exponentially with the characteristic number of repressor

molecules, and are reduced when proteins are synthesized in large bursts [28]. It is

also known that the noise magnitude affects the dynamical characteristics of the toggle

switch. As shown by Dai et al a deterministically bistable toggle switch has two

stochastic (or noise) attractors only for a limited noise amplitude [29]. An excess of

noise makes the toggle switch first tristable (with a new third state characterized by high

expression of both genes), then monostable, with both genes expressing simultaneously.

The model considered by Dai et al involves delays accounting for time duration of various

gene expression processes. The considered delays are due to the formation of an open

promoter complex, ribosome clearance, transcriptional and translational elongation and

posttranslational processing, see [30] for review.

In the current study we answer the question whether noise itself can control a

relative stability of the two toggle macroscopic steady states. Such mode of control would

enable activation or repression of a particular toggle gene without any modification of
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the associated epigenetic landscape. In the studied toggle switch model we consider

explicitly processes of mRNA transcription, protein translation, protein dimer formation

and gene repression. Each of these processes introduces a different type of noise to the

system. We will show that the change of the magnitudes of noise components for

any of the two competing genes alters the protein SPD and changes the probability

mass fraction in each of the two basins of attraction. Interestingly, a decrease of noise

associated with a given gene can promote activation of that gene or the other, depending

on the type of noise.

2. Model

The toggle switch model consists of two competing genes: gene 1 and gene 2, figure 1.

Each gene can be repressed by the competing gene protein dimer. Processes of gene

repression, mRNA transcription, protein translation, dimer formation and dissociation

are explicitly included in the model, table 1. Each of these processes is considered

stochastic and contributes to noise in levels of molecules.

The model defines a time-continuous Markov process involving eight random

variables: the gene 1 and gene 2 states, G1(t), G2(t) ∈ {0(repressed),1(active)}, numbers

of molecules of the mRNA 1 and mRNA 2, M1(t), M2(t) ∈ N, numbers of molecules of

the protein monomer 1 and protein monomer 2, P1(t), P2(t) ∈ N, numbers of molecules

of the protein dimer 1 and protein dimer 2, D1(t), D2(t) ∈ N. The default transition

propensities ki, (i = 1...9) for each of the nine considered reactions (see figure 1) are

assumed equal for both genes, table 1. These rates are chosen so that the system in the

deterministic approximation is bistable, i.e. it has two stable steady state solutions, each

corresponding to a high expression of one gene and a low expression of the another, and

the unstable steady state for which both genes have the same relatively low expression.

The stochastic trajectories switch between the basins of attraction of these two stable

steady states, figure 2. The full symmetry between the two genes (for the default

parameters) is manifested by the symmetric stationary probability distribution (SPD).

The stochastic trajectories and the SPDs of the system were obtained in the Gillespie

algorithm simulations [31].

In the next section we will analyze the dynamics of the model with respect to

the magnitudes of individual noise components. In particular we will focus on the

gene switching and protein dimerization noises. The gene switching noise is controlled

independently for each of the two genes by parameters σi (i = 1, 2), which multiply

simultaneously rate constants of gene activation and gene repression, k1 and k2,

respectively (see figure 1). The noise introduced by the gene switching decreases with

the switching rates, and becomes zero in the adiabatic limit when these rates are infinite.

We will thus consider 1/σi as the gene switching noise parameter. Parameter σi controls

noise in the system, but, as we will see in the next section, its value does not influence

steady states of the deterministic approximation of the system. The dimerization noise is

controlled by parameters θi (i = 1, 2), which multiply simultaneously dimer association
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and dimer dissociation rate constants, respectively k6 and k7, see figure 1. Thus the

dimerization noise of the gene i product decreases with increasing θi, but again the

value of θi does not influence the steady state of the deterministic approximation of the

system.

The control of the toggle switch coefficients by dimerization and gene switching

noise parameters, was chosen because it allows us to separate noise effects from the

effects resulting from modification of macroscopic steady states of the system. Such

approach allows us to compare different stochastic systems having the same deterministic

approximation.

3. Results

3.1. Deterministic approximation

We start the analysis of the model dynamics with an examination of its deterministic

approximation. In the deterministic approximation the stochastic variables describing

gene states Gi are replaced by continuous variables gi. The remaining variables, Mi, Pi,

Di are considered continuous and are scaled by their maximal values, respectively M0,

P0, D0, reached under the condition that each gene is in the active state.

M0 = k3/k8; P0 = (k3k5)/k8k9; D0 = k6(k3k5)
2/(k7(k8k9)

2). (1)

The scaled variables:

mi = Mi/M0, pi = Pi/P0, di = Di/D0 (2)

will be referred to as scaled “concentrations”. Now, the considered Markov process can

be approximated by the system of eight ordinary differential equations:

dgi
dt

= σi(k1(1− gi)− k2D0djgi), (3)

dmi

dt
= k8gi +

k4
M0

(1− gi)− k8mi, (4)

dpi
dt

= 2θik6P0(di − p2i ) + k9(mi − pi), (5)

ddi
dt

= θik7(p
2
i − di), (6)

where i = 1, 2 and j = 3− i. The deterministic approximation is accurate only when the

characteristic numbers of molecules are large (enough to be replaced by the continuous

concentrations). For bacteria this condition is seldom satisfied, and thus mass rate

equations may serve only as a reference for the stochastic analysis. In particular, in

equation 6, the loss of a (single) dimer molecule that binds DNA is neglected, although

this loss is accounted in stochastic simulations.

The steady state values of p1 are given by the real roots of the fifth order polynomial,
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The steady state values of the remaining variables are given by the following relations:
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m1 = p1, d1 = p21, (9)

m2 = p2, d2 = p22, (10)
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For the assumed parameters (table 1) the polynomial W (p1) has three real roots, and

correspondingly the system has three steady states (figure 2 and figure 4(a)):

• the unstable state S0: g1 = g2 ≈ 0.12, m1 = p1 = m2 = p2 ≈ 0.15,

d1 = d2 ≈ 0.022,

• the stable state S1:

g1 ≈ 0.006, g2 ≈ 0.71, m1 = p1 ≈ 0.72, d1 ≈ 0.51, m2 = p2 ≈ 0.036,

d2 ≈ 0.0013,

• the stable state S2:

g1 ≈ 0.71, g2 ≈ 0.006, m1 = p1 ≈ 0.036, d1 ≈ 0.0013, m2 = p2 ≈ 0.72,

d2 ≈ 0.51.

In the steady state S1 the gene 1 is mostly active while the gene 2 is repressed. In

the steady state S2 the gene 2 is mostly active and the gene 1 is repressed. In the

deterministic approximation the choice of the stationary state is determined by the

initial conditions, i.e. trajectories remain in the same basin of attraction. In figure 2

we show the correspondence between deterministic steady states S0, S1, and S2 and

trajectories of the stochastic system. The scaled concentrations (given on right-hand-

side of each panel) can be converted to the numbers of molecules (given on left-hand-side)

by relations 2.

3.2. Stochastic model analysis

In the stochastic model, trajectories switch between the two basins of attraction, figure 2.

Since the system is mutidimensional the exact determination of attraction basins is

difficult. For practical purposes in order to determine mean residence times T1 and T2
in the basins of state S1 and state S2 (or shortly in states S1 and S2) we assume the
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following definitions of state-to-state transitions: the S1 to S2 transition occurs when

P2−P1 > P0(p1(S1)−p1(S2))/3 and in addition when D2−D1 > D0(d1(S1)−d1(S2))/3,

and analogously for the reverse transition. Accordingly, the events in which only P2−P1

becomes grater than P0(p1(S1)−p1(S2))/3, are not counted as state-to-state transitions.

When performing sensitivity analysis (Section 3.3), we observe that for some sets of

parameters (for which dimers have much higher stability than monomers) such pseudo-

transitions are quite frequent but are not followed by a trajectory jump to the vicinity

of the another steady state. For the similar reasons it is not enough to require that P2

and D2 simply exceeds P1 and D1, respectively. Such definition would lead to multiple

pseudo-transitions accompanying almost every single real transition.

Stationary probability mass fractions in the vicinities of stable steady states S1

to S2 can be estimated from the mean residence times as π∗(S1) := T1/(T1 + T2) and

π∗(S2) := T2/(T1 + T2). However, because the definition of state-to-state transitions is

arbitrary, we will also estimate probability mass fractions independently to the mean

residence times for a cross validation. We make use of the fact that in the deterministic

approximation the system is symmetric with respect to both genes. This allows us

to define π(S1) := 〈G1〉 /(〈G1〉 + 〈G2〉) and π(S2) := 〈G2〉 /(〈G1〉 + 〈G2〉), where 〈G1〉
denotes the average state of the gene 1, equal to the probability that the gene is active.

The stationary probability mass fractions π(S1) and π(S2) will be estimated based on

the long-run Gillespie algorithm simulations, having 1000 (for figures 3 and 5) or 100

(for figures 6 and 7) S1 to S2 (and reverse) transitions. Based on the same simulations

we will also estimate the mean residence times T1 and T2.

As one could expect, in the symmetric case i.e. when σ1 = σ2 = σ and θ1 = θ2 = θ

the mean residence times T1 and T2 are equal and decrease with the increasing magnitude

of noise in the system. As shown in figure 3, an increase of any of the two considered

noise components (i.e. 1/σ or 1/θ) leads to a shortening of the mean residence times

in states S1 and S2. This allows for the interpretation of 1/σ and 1/θ as, respectively,

the gene switching and dimerization noise parameters. As analyzed earlier by Warren

and ten Wolde ([28]) the mean residence time decreases with increasing transcriptional

noise (inversely proportional to the number of product molecules). We also observe this

effect within the considered toggle switch model, see Appendix A.

Responses of the system to a non-symmetric change of noise parameters are less

intuitive. In figure 4 we analyze changes of the SPD in response to the non-symmetric

(only for gene 2) five-fold change of the gene switching or dimerization noise. As shown

(figure 4(c)), the increase of the gene 2 switching noise induces a break of symmetry of

the SPD, such that the probability mass fraction concentrates in the vicinity of state S1

(i.e. the state in which the gene 1 is predominantly active) with π(S1) = 0.84. In turn,

the decrease of the gene 2 switching noise makes the gene 2 dominant, with π(S1) = 0.36

(figure 4(e)). Surprisingly, the increase of the dimerization noise for the gene 2 protein

causes the gene 2 activation (with π(S1) = 0.19, figure 4(d)), while the decrease of

the gene 2 protein dimerization noise causes the gene 1 activation (with π(S1) = 0.64,

figure 4(f )).
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In short, an increase of noise associated with a given gene may either promote or

suppress its activation depending on the increased noise component. An increase of the

gene switching noise promotes the activity of the competing gene, while an increase of

the dimerization noise suppresses the competing gene activation. These two opposing

effects can be combined by the simultaneous five-fold increase of the gene 2 switching

noise, and five-fold decrease of its product dimerization noise, which leads to an almost

full suppression of the gene 2 activity, with π(S1) = 0.89, figure 4(g).

The results shown in figure 4 are supported by the analysis of the mean residence

times T1 and T2, figure 5. As shown in figure 5(a) an increase of the gene 2 switching

noise induces an increase of the time T1, and a decrease of the time T2. In contrast,

an increase of the gene 2 protein dimerization noise leads to an increase of the time

T2 and simultaneously leads to a decrease of the time T1. The above analysis implies

that an increase of the gene switching noise stabilizes the gene in the inactive state, and

destabilizes it in the active state. The increase of a given gene product dimerization

noise stabilizes that gene in the active state and additionally eases inhibition of the

competing gene.

As shown in figure 5 the probability mass fraction π(S1) (defined, recall, as

π(S1) := 〈G1〉 /(〈G1〉 + 〈G2〉)) is almost equal to π∗(S1) := T1/(T1 + T2), showing

the perfect consistency of these two measures. Accordingly, π(S1) is a monotonically

growing function of the gene 2 switching noise (with π(S1) = 0.91 for 1/σ2 = 10)

and a monotonically decreasing function of the gene 2 protein dimerization noise (with

π(S1) = 0.10 for 1/θ2 = 10); see figure 5, two bottom subpanels.

The results presented in figure 3 and figure 5 can be explained as follows. As shown

in figure 4, trajectories transit between states S1 and S2 through the vicinity of state S0

in which both genes are mainly repressed, and the levels of both proteins are low. Thus,

the S1 to S2 transition requires repression of the active gene (G1) by binding of a protein

dimer, product of the repressed gene (G2). These dimers arise infrequently due to the

small mRNA synthesis from the repressed gene G2 (coefficient k4, Table 1). A detailed

analysis of the trajectory which short fragment is shown in figure 2 indicates that for

the default parameters less than 1% of the active gene switching-off events leads to a

state-to-state (S1 to S2 or reverse) transition, compare figure 2(a) and (c). When gene

switching noise increases, say 10-fold, the gene switching-off events are 10 times less

frequent, but the time for which the gene is switched off is 10 times longer. We found

that these longer switch-offs are much more effective, and almost all of them leads to

state-to-state transitions. As a result increase of the gene 2 switching noise shortens the

mean residence time T2 (in S2) figure 5(a). Simultaneous increase of the gene switching

noise for gene 1 and gene 2, shortens both T1 and T2, figure 3(a).

As said, the active gene switching-offs follow synthesis of single dimers from the

repressed gene. For the default parameters a synthesis of a single dimer leads in average

to k2/k7 = 1.5 switching-off events (less when several dimers compete for the binding

site). When the gene 2 dimerization noise increases, say 10-fold, gene 2 dimers appear

10-fold less frequently, but survive 10 times longer. As a result appearance of a single
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dimer leads to k2/(k7/10) = 15 switching-off events. Because these switch-offs arise in

series, they have much higher chance to induce S1 to S2 transition. As a result when the

gene 2 dimerization noise increases, the time T1 decreases, figure 5(b). Simultaneously,

the time T2 increases, because a S2 to S1 transition requires longer repression of the

gene 2, necessary for protein dimers of the gene 2 to dissociate to monomers, figure 5(b).

The last effect, however, is weaker than the previous one, and therefore a simultaneous

increase of protein 1 and protein 2 dimerization noises leads to the decrease of both T1
and T2, figure 3(b).

3.3. Sensitivity analysis

In order to analyze the sensitivity of the presented results to a model parameters

variation we perform systematic robustness analysis based on the Latin hypercube

parameter sampling. This is, we toss 600 points (Xi, i = 1...9) from the nine dimensional

unit cube. Based on the tossed Xi, we calculated 600 sets of new coefficients Ki, as

Ki = 5(1−2Xi)ki for i 6= 3, Ki = 2(1−2Xi)ki for i = 3. (13)

Thus the new coefficients are allowed to vary 5 fold above and 5 fold below the default

values, except for parameter k3 for which the variation was two-fold. The 5-fold variation

of k3 led to very long mean residence times, increasing numerical cost of simulations.

From the obtained 600 sets of parameters we left 322 sets for which the system in the

deterministic approximation maintained bistability.

For these selected sets of parameters we calculated the probability mass fraction

π(S1) := 〈G1〉 /(〈G1〉+ 〈G2〉), and the average mean transition time (T1 + T2)/2 in the

case when either gene switching or dimerization noise was increased 10-fold for one of

the genes. This is, we analyze two cases:

(1) when the gene 2 switching noise parameter is 1/σ2 = 10 (with σ1 = θ1 = θ2 = 1),

(2) when the gene 2 dimerization noise parameter is 1/θ2 = 10 (with θ1 = σ1 = σ2 = 1).

Calculations were made using the same method as previously based on simulations with

100 transitions.

In the first (second) case we managed to accomplish 292 (287) out of 322

simulations. In the remaining simulations the S1 to S2 (or reverse) transitions rates

were so small, that we were not able to reach 100 S1 to S2 transitions. In these

cases the relative state occupancies can be calculated using the forward flux sampling

methods developed by group of ten Wolde [32, 33]. However, because these methods are

challenging for multidimensional systems, we simply remove the unfinished simulations

from the further analysis. As will be demonstrated latter, since the studied effect of the

SPD asymmetry increases with decreasing transitions rates, we remain confident that

inclusion of these unfinished trajectories would only improve our results.

In figure 6(a) and (b) we show histograms of probability π(S1) in the first and second

case, respectively. Let us recall that in simulations performed for the default parameters

(figure 5), we obtained π(S1) = 0.91 for 1/σ2 = 10 and π(S1) = 0.1 for 1/θ2 = 10. Here,
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we found that for 1/σ2 = 10, the probability mass fraction π(S1) > 0.5 for 97% of tossed

and computed sets of parameters, and that the average 〈π(S1)〉 = 0.77. For 1/θ2 = 10

case the probability mass fraction π(S1) < 0.5 for 99% of tossed and computed sets of

parameters, and that the average 〈π(S1)〉 = 0.23.

In figure 7 we present the scatter plot showing the probability mass fraction π(S1)

versus average mean residence time (T1 + T2)/2. The dots and triangles correspond

to 1/σ2 = 10 and 1/θ2 = 10 cases, respectively. The presented data indicate that the

asymmetry of the SPD increases with the mean residence time i.e. the stability of the

toggle switch. This finding is important, since bacterial toggle switches can be extremely

stable with transition times exceeding millions of cell cycles [34].

4. Conclusions

In this study we considered a bistable stochastic model of the genetic toggle switch.

The reactions of mRNA transcription, protein translation, dimerization, and gene

repression by binding of the competing protein dimers are explicitly included in the

model. We focused on the two stochasticity sources present in the regulation: the

gene switching and the protein dimerization noise. These two noise components were

modified independently by changing simultaneously repressor binding and dissociation

rate constants, or rate constants of a protein dimer formation and dissociation.

This procedure enabled us to modify the noise characteristics of the system without

influencing the deterministic limit of the process.

Our analysis demonstrated that an increase of noise associated with the expression

of a particular gene introduces a large asymmetry in the SPD. Interestingly, we observe

that each of the genes is repressed by increasing its gene switching noise (i.e. when

its promoter repression and activation rates decrease). In contrast, the increased

dimerization noise for a particular gene product leads to the preferential activation of the

gene. We thus showed that various noise components associated with gene expression

and protein processing antagonistically contribute to the strength of each of the two

competing genes.

The sensitivity analysis based on the Latin hypercube parameters sampling

demonstrated that the SPD asymmetry introduced by an increase of particular noise

component is statistically robust with respect to the large (up to 5-fold) parameters

deviations, that change macroscopic steady states as well as state-to-state transitions

rates. The effect of the preferential gene inactivation due to gene switching noise

increase, observed for the assumed default parameters, was conserved for 283 out of

292 tossed and computed parameter sets. Similarly the effect of the preferential gene

activation due its product protein dimerization noise increase was conserved for 283 out

of 287 tossed and computed parameter sets. Importantly, we found that the scale of the

noise introduced asymmetry positively correlates with the stability of the toggle switch.

The asymmetry was statistically increasing with mean residence time, which calculated

for the tossed parameters sets varied about 8 orders of magnitude. This implies that



Toggle switch: Noise determines the winning gene 11

the discovered effect can be important in bacterial toggle switches which may exhibit

enormous stability, with one transition over millions of generation.

The observation that magnitudes of individual noise components determine the

dominating gene opens the possibility of the new mode of a toggle switch control. Such

a control can be potentially exploited in the synthetic biology, which offers tools for

an independent modification of various noise sources [35, 36]. It remains an open

question whether extracellular conditions can switch the toggle by modifications of

noise components. Such regulation seems quite likely for bacteria. For example, the

temperature can modify repressor binding and dissociation rate constants and a level of

nutrients may regulate transcription and translation rates. The potential advantage of

the noise driven control is such that it does not influence macroscopic steady states of

the system and thus assures that the cell remains in one of the predefined local optima.

Appendix A: Decrease of the mean residence time with increasing

transcriptional noise

Here, we analyze the effect of transcriptional noise introducing new coefficient ξ.

Multiplying the mRNA transcription rate coefficient k3 by ξ, and simultaneously

dividing dimerization and DNA-dimer binding coefficients k6 and k2 by ξ we obtain

systems characterized by ξ-fold larger (than default) number of mRNA, protein

monomer and protein dimer molecules, but the same scaled concentrations. The inverse

of coefficient ξ can be thus considered as a measure of transcriptional noise. In figure 8,

we show that the mean residence time decreases with the magnitude of transcriptional

noise 1/ξ.
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Tables and table captions

Table 1. Reaction rate constants

Physiological

Default value range

Reaction Symbol σi = 1, θi = 1 for bacteria (volume 1 µm3)

gene activation σik1 0.003 [1/s] unknowna

by protein dimer dissociation

gene repression by σik2 0.015 [1/(mlcl×s)] unknownb

protein dimer binding

mRNA transcription k3 0.02 [1/s] ≤ 0.84 [1/s]c

from the active gene

mRNA transcription k4 0.0006 [1/s] d

from the repressed gene

protein translation k5 0.01 [1/(mlcl×s)] ∼ 10−2÷ ∼ 10 [1/s]e

dimer formation θik6 0.0001 [1/(mlcl×s)] 1.63× 10−6 ÷ 9.47 [1/(mlcl×s)]f

dimer dissociation to monomers θik7 0.01 [1/s] 5× 10−8 ÷ 1.9× 103 [1/s]g

mRNA degradation k8 0.005 [1/s] 10−2 ÷ 6× 10−4 [1/s]h

protein monomer degradation k9 0.0005 [1/s] ∼ 1.4× 10−5÷ ∼ 10−2 [1/s]i

mlcl=molecule
a,b For prokaryotes gene switching is faster then for eukaryotes [37].
c,d For E. coli maximal transcription rate: 0.16÷ 0.84/s [38].
e Translation initiation intervals are of the order of seconds, although they are specific for each mRNA

[39]. E. coli : translation initiation rate may vary at least 1000-fold [40]; examples of translation

initiation frequencies: β-galactosidase – 0.31/s (spacing between ribosomes: 110 nucleotides),

galactoside acetyltransferase – 0.06/s (spacing between ribosomes: 580 nucleotides) [38]; maximal

peptide chain elongation rate: 20 aa/s [41, 42]; average peptide chain elongation rate: 12 aa/s [38].
f All cell types: 9.8 × 102/(M × s) ÷ 5.7 × 109/(M × s)[43]; for 1µm3 volume (bacterial) cell:

1.63×10−6/mlcl×s÷9.47/mlcl×s.
g All cell types: 5×10−8/s÷1.9×103/s [43]. Dissociation constant range: 7.2×10−17M ÷2.2×10−6M

[43]; for 1µm3 volume (bacteria) 4.34× 10−8/mlcl×s÷1.32× 103/mlcl×s.
h The vast majority of mRNAs in a bacterial cell are very unstable, having a half life of about 3 minutes.

Bacterial mRNAs are both rapidly synthesized and rapidly degraded [44]. The average mRNA copy

number in E. coli is 10−4 ÷ 5 mlcls/cell [45].
i Most of bacterial proteins are very stable, with degradation rates: 1.4 × 10−5 ÷ 5.6 × 10−5/s [46].

Some proteins have much higher degradation rates. E. coli RNase R has degradation rate of 10−3/s

(in exponential phase) [47], factor σ32 has degradation rate of 10−2/s (in steady-state growth phase)

[48]. The average protein copy number in E. coli is 10−1 ÷ 104 mlcls/cell [45].
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Figure 1. The schematic of the stochastic toggle switch model. Each of two genes can

be repressed by binding of the protein dimer molecule, the product of the competing

gene. The repressed gene is activated by the dissociation of the dimer molecule (which

returns to the pool of free dimers) from its promoter. We assume small, but non-zero

mRNA transcription from the repressed genes. Other stochastic reactions explicitly

included in the model are: protein translation, dimer formation and its dissociation,

and degradation of mRNA and protein monomer molecules. We assume that dimers are

much more stable than monomers and thus we neglect their degradation. Coefficients

σi and θi control individual gene switching and dimerization noise components. For

σ1 = σ2 and θ1 = θ2 all reaction corresponding propensities are equal for both genes

(symmetric case).
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Figure 2. The stochastic simulation trajectories for σi = θi = 1, i = 1, 2. Dashed

lines denote steady states of the deterministic approximation. On the left vertical

axis numbers of molecules are given, on the right vertical axis we show the scaled

“concentrations” (see text). The corresponding protein monomer SPD is shown in

Figure 4(a).
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Figure 3. The mean residence time in states S1 and S2 calculated in the symmetric

case as a function of the gene switching noise 1/σ or dimerization noise 1/θ, where

σ = σ1 = σ2 and θ = θ1 = θ2.
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Figure 4. The SPDs of the stochastic model obtained in Monte Carlo simulations.

Panels (a) and (b) show the contour and mesh plots in the symmetric case (σi = θi =

1, i = 1, 2). Panel (a): The stable steady states of the corresponding deterministic

model are marked with dots, the unstable steady state is marked with a circle. An

increase or decrease of noise associated with the gene 2 expression causes that the

SPD becomes asymmetric. Panels (c), (d), (e) and (f ): Increase of the gene switching

noise, causes that the probability mass concentrates in the vicinity of state S1, while

an increase of dimerization noise causes that most of the probability mass concentrates

in the vicinity of the state S2. A decrease of the gene switching noise causes that the

probability mass concentrates in the state S2, while a decrease of the dimerization

noise causes that most of the probability mass concentrates in the vicinity of the state

S1. Panel (g): A simultaneous 5-fold increase of the gene 2 switching noise and a

decrease of the gene 2 dimerization noise results in the largest asymmetry of the SPD,

89% of the probability mass concentrated in the state S1.
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Figure 5. The mean residence times T1 and T2 in states S1 and S2 are plotted as

a function of the gene 2 noise parameters 1/σ2 and 1/θ2 (with the remaining noise

parameters equal 1). A decrease of 1/σ2 increases the stability of the state S2 and

simultaneously decreases the stability of the state S1 (panel (a)). In contrast, a

decrease of 1/θ2 increases stability of the state S1 and decreases stability of the state

S2 (panel (b)). The two bottom subpanels show the probability of the state S1, as

a function of the gene 2 noise parameters estimated as π(S1) = 〈G1〉 /(〈G1〉 + 〈G2〉)
(line) and π̃(S1) = T1/(T1 + T2) dots.
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Figure 6. Histograms of probability π(S1) for parameters tossed based on the Latin

hypercube sampling. All nine tossed parameters may vary five fold from their default

values (except k3, see text for details). Panel (a): Increased gene 2 switching noise

parameter, 1/σ2 = 10 (with σ1 = θ1 = θ2 = 1). Panel (b): Increased gene 2

dimerization noise parameter, 1/θ2 = 10 (with θ1 = σ1 = σ2 = 1). For the default

parameters (see figure 5), π(S1) = 0.91 for 1/σ2 = 10 and π(S1) = 0.10 for 1/θ2 = 10.
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Figure 8. Mean residence time as a function of transcriptional noise 1/ξ.
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