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A central challenge in computational modeling of dynamic biological
systems is parameter inference from experimental time course measure-
ments. However, one would not only like to infer kinetic parameters but
also study their variability from cell to cell. Here we focus on the case
where single-cell fluorescent protein imaging time series data are available
for a population of cells. Based on van Kampen’s linear noise approxima-
tion, we derive a dynamic state space model for molecular populations
which is then extended to a hierarchical model. This model has potential
to address the sources of variability relevant to single-cell data, namely,
intrinsic noise due to the stochastic nature of the birth and death pro-
cesses involved in reactions and extrinsic noise arising from the cell-to-cell
variation of kinetic parameters. In order to infer such a model from exper-
imental data, one must also quantify the measurement process where one
has to allow for nonmeasurable molecular species as well as measurement
noise of unknown level and variance. The availability of multiple single-
cell time series data here provides a unique testbed to fit such a model
and quantify these different sources of variation from experimental data.
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1. Introduction. The effect of stochasticity (“noise”) on linear and non-
linear dynamical systems has been studied for some time, yet significant new
aspects continue to be discovered. Here we consider population dynamical
systems, that is, systems which model the dynamics of species of popula-
tions stochastically by birth and death processes. This modeling framework
has been widely applied in many scientific fields, including molecular biology,
ecology, epidemiology and chemistry. Examples include predator-prey popu-
lation dynamics [McKane and Newman (2005)], SIR-type epidemic modeling
[Simoes, Telo da Gama and Nunes (2008)], genetic networks [Scott, Ingalls
and Kaern (2006)], molecular clocks [Gonze, Halloy and Goldbeter (2002)]
and biochemical networks [Wilkinson (2011)].

Basic cellular processes such as gene expression are fundamentally stochas-
tic with randomness in molecular machinery and interactions leading to
cell-to-cell variations in mRNA and protein levels. This stochasticity has
important consequences for cellular function and it is therefore important
to quantify it [Thattai and van Oudenaarden (2001), Paulsson (2004, 2005),
Swain, Elowitz and Siggia (2002)]. Elowitz et al. (2002) defined extrinsic

noise in gene expression in terms of fluctuations in the amount or activity
of molecules such as regulatory proteins and polymerases which in turn cause
corresponding fluctuations in the output of the gene. They pointed out that
such fluctuations represent sources of extrinsic noise that are global to a sin-
gle cell but vary from one cell to another. On the other hand, intrinsic noise

for a given gene was defined in terms of the extent to which the activities
of two identical copies of that gene in the same intracellular environment
fail to correlate because of the random microscopic events that govern the
timing and order of reactions. We can therefore consider that much of what
makes up extrinsic noise can be expressed mathematically in terms of the
stochastic variation between kinetic parameters across a population of cells.

The availability of replicate single cell data provides us with a unique
opportunity to estimate and explicitly quantify such between-cell variation.
Recent developments in fluorescent microscopy technology allow for levels of
reporter proteins such as green fluorescent protein (GFP) and luciferase to
be measured in vivo in individual cells [Harper et al. (2011)]. Here, an im-
portant issue is to relate the unobserved dynamics of expression of the gene
under consideration to the observed fluorescence levels of the reporter pro-
tein [Finkenstädt et al. (2008)]. This is facilitated by knowledge of the kinetic
parameters associated with the translational and degradational processes of
the reporter protein and mRNA. In this study we present a methodology
for estimating these rates and their cell-to-cell variation. The approach can
be seen as an example of a general modeling framework which has the po-
tential to explicitly quantify and decouple both intrinsic and extrinsic noise
in population dynamical systems.
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The structure of our study is as follows: starting with a single cell stochas-
tic model, we introduce the modeling approach and inference methodology.
This is then extended toward a population of cells by introducing a Bayesian
hierarchical structure where the cell-to-cell variation in certain parameters
such as degradation rates is quantified by a probability distribution. We also
introduce the basic idea of the linear noise approximation (LNA) which is
a key ingredient to rendering inference computationally efficient given the
complexity of a hierarchical model and the amount of data. The perfor-
mance of the Markov chain Monte Carlo (MCMC) estimation algorithms is
first tested on simulated data from the model and results are presented for
both simulated and real data.

2. Model of gene expression and data. Our stochastic model for a single
cell follows the general model of gene expression [Paulsson (2005)] shown
in Figure 1. The active gene transcribes mRNA which is then translated
into protein. During this process both mRNA and protein are degraded. We
wish to infer this model from multiple single cell protein imaging time series
of the sort shown in Figure 2 resulting from two types of experiments (see
Appendix A.1 for technical details). In the first experiment (Figure 2, left
panel) the synthesis of protein was inhibited by adding the translational
inhibitor Cycloheximide. In the second experiment (Figure 2, right panel)
the transcriptional inhibitor Actinomycin D was added to block the syn-
thesis of mRNA. In both cases only the fluorescent form of the protein is
observable. Single cell images of green fluorescent protein (GFP) molecules
were collected every 5 min at discrete time points ti; i= 1, . . . , T , and quan-
tified to give a time series Y (ti). The images were collected simultaneously
for a collection of cells. Allowing for an appropriately formulated measure-

Fig. 1. The expression of a gene into its protein is determined by four processes: tran-
scription, translation, mRNA degradation and protein degradation.
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Fig. 2. Left: observed fluorescence level from translation inhibition experiment (40 cells,
59 observations per cell). Right: observed fluorescence level from transcription inhibition
experiment (25 cells, 88 observations per cell). For both experiments measurements were
taken simultaneously in cells every 5 minutes.

ment process, our aim is to provide a statistical methodology for estimating
the kinetic parameters and for quantifying their variability between cells.
The model of gene expression in Figure 1 constitutes a system of two dif-
ferent molecular subpopulations, namely, mRNA and protein, with state

vector X(t) = (X1(t),X2(t))
T where Xi(t), i = 1,2, denotes the number of

molecules of each species, respectively. There are m= 4 possible reactions
(transcription, degradation of the mRNA, translation, degradation of the
protein), where a reaction of type j changes X(t) to X(t) + vj with

v1 =

(

1
0

)

, v2 =

(

−1
0

)

, v3 =

(

0
1

)

, v4 =

(

0
−1

)

,

called stoichiometric vectors. Each reaction occurs at a rate wj(X(t)) as
summarized in Table 1.

3. Inference for reaction networks. Reaction networks such as the one
introduced above constitute continuous time Markov jump processes and
thus satisfy the Chapman–Kolmogorov equation for which one can obtain

Table 1

Summary of reactions in the standard model of gene expression

Event Effect Transition rate

Transcription (X1,X2)→ (X1 +1,X2) w1 = β(t)
Degradation of mRNA (X1,X2)→ (X1 − 1,X2) w2 = δ1X1(t)
Translation (X1,X2)→ (X1,X2 +1) w3 = αX1(t)
Degradation of protein (X1,X2)→ (X1,X2 − 1) w4 = δ2X2(t)
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the forward form known as the master equation (ME) describing the evolu-
tion of the probability P (X1 = n1,X2 = n2; t). Although an exact numerical
simulation algorithm is provided [Gillespie (1977)], the ME is rarely tractable
and, hence, an explicit formula for the exact likelihood is not available for
parameter inference. Additionally, longitudinal data from such systems are
usually discrete in time and only partially observed, that is, not all molecular
species are measurable during the experiment. This poses further challenges
to the estimation problem.

One way forward is to consider suitable approximations of the likelihood
function. In particular, the diffusion approximation describing the process
by a set of Itô stochastic differential equations (SDEs), also called chemical
Langevin equations, has been of use in this context. This approach is rigor-
ously modeling the intrinsic noise of the stochastic dynamics of the kinetic
processes provided that the assumptions of the SDE approximation itself are
valid. However, the associated likelihood is also usually intractable and ap-
proximations have to be considered using numerical simulations [Golightly
and Wilkinson (2005, 2008), Heron, Finkenstädt and Rand (2007)]. Here, the
basic idea, which has earlier been considered in econometric applications
of SDEs to discretely observed data [Elerian, Chib and Shephard (2001),
Durham and Gallant (2002)], is to assume a Gaussian approximation to the
transition density [Kloeden and Platen (1999)] for a sufficiently small time
interval and to augment the discretely observed data, along with any other
unobserved variables, by introducing a number of latent data points, thus
creating a fine virtual discrete time grid for which the normal approximation
is valid. In particular, for partially observed systems the resulting estimation
algorithms are challenging to implement and computationally intensive even
for single time series because the dimension of the resulting posterior density
becomes very large. Heron, Finkenstädt and Rand (2007) and Golightly and
Wilkinson (2008) consider additional measurement error in a partially ob-
served system but assume that the observed data is measured at the correct
population level and that the variance of the measurement error is known.
Attempts to incorporate realistic assumptions about the measurement pro-
cess have been extremely limited within this framework and applications
have only been on artificially simulated discretized time series data from
chemical networks.

Another approach that has received attention in theoretical studies of
chemical networks [Elf and Ehrenberg (2003), Paulsson (2004)] is the linear
noise approximation (LNA) [Van Kampen (1976, 1997)]. This decomposes
the system into a set of ordinary differential equations (ODEs) for the mean
and a set of linear SDEs with Gaussian transition densities for the fluctu-
ations around the mean. While the validity of the LNA is the subject of
ongoing research [Wallace et al. (2012)], its use for Bayesian inference in
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chemical networks was first suggested and studied for some example net-
works in Komorowski et al. (2009) who also provide an application to single
cell time series experimental data. The LNA has the advantage that the ap-
proximated likelihood is multivariate Gaussian. Hence, it is straightforward
to incorporate both Gaussian measurement error (with unknown variance)
and a model relating the observed imaging data to the unobserved molecular
populations, some of which may not be measurable.

4. Linear noise approximation. The LNA as formulated by Kurtz (1971,
1981) is derived directly from the underlying Markov jump process and is
valid for any time interval of fixed length. However, here we follow a sim-
plified derivation of the LNA by Wallace (2010) [see also Wilkinson (2011)]
which is adequate for our purposes. Readers should consult Kurtz (1981) for
the precise assumptions and validity of the approximation.

Consider an approximation for a fixed time interval of length τ where for
each reaction j we define Kj to be the number of events of type j that occur
within the interval of length τ . Kj depends on the rate wj and on τ . The
system state vector can then be updated with the stoichiometric vectors vj
as

X(t+ τ) =X(t) +

m
∑

j=1

vjKj(wj(X(t)), τ).(4.1)

Under the assumption that τ is small enough so that the rate function
wj(X(t)) can be considered constant over [t, t+ τ) for all j, known as the
first leap condition [Gillespie (2001)], the distribution of each Kj is Poisson
with mean and variance E[Kj ] = Var[Kj ] =wj(X(t))τ . If, furthermore, τ is
large enough so that wj(X(t))τ is large for all j (second leap condition),
then Kj is Gaussian Kj ∼ N(wj(X(t))τ,wj(X(t))τ). With the Gaussian
assumption the updating rule in equation (4.1) becomes

X(t+ τ) =X(t) + τ

m
∑

j=1

vjwj +
√
τ

m
∑

j=1

vj
√
wjεj ,(4.2)

where εj ∼N(0,1), j = 1, . . . ,m, are independent standard normal random
variables. For simplicity of notation we use wj instead of wj(X(t)). The
LNA makes the ansatz

X(t) = Ωφ(t) +
√
Ωζ(t),(4.3)

that is, the process X(t) can be written as the deterministic solution of the
macroscopic equations φ(t) = (φ1(t), φ2(t))

T of the concentrations plus a
residual stochastic process ζ(t) = (ζ1(t), ζ2(t))

T where both components are
scaled appropriately by the volume Ω of the system. Van Kampen (1997)
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derives the LNA from a system size expansion of the ME where terms of
first order give the macroscopic rate equations or ODEs, and terms of second
order give a set of SDEs for the stochastic process ζ(t) (see Appendix A.2).
A simplified derivation (see Appendix A.2) shows that the LNA also pro-
vides a first order Taylor approximation to equation (4.2). The macroscopic
solutions for our model are

dφ1(t)

dt
= β(t)− δ1φ1(t),

(4.4)
dφ2(t)

dt
= αφ1(t)− δ2φ2(t).

The residual stochastic process is characterized by

dζ(t) = Jζ(t)dt+B(t)dW (t),(4.5)

where W = (W1,W2)
T , W1,W2 are independent Wiener processes,

B(t) =

(
√

β(t) + δ1φ1(t) 0

0
√

αφ1(t) + δ2φ2(t)

)

and

J =

(

−δ1 0
α −δ2

)

.

Due to the linearity of (4.5), the transition densities P (ζ(ti+1)|ζ(ti)) for
arbitrary time length are Gaussian. For our model J is time-independent
and, hence, the mean is given by

µ(ti) = eJ∆iζ(ti),

that is, the solution for the deterministic part of (4.5) from a starting value
ζ(ti), where ∆i = ti+1− ti is the length of the interval. The covariance matrix
is

Σ(ti) =

∫ ti+1

ti

eJ(ti+1−s)B(s)B(s)T (eJ(ti+1−s))T ds.(4.6)

The approach does not require equidistant measurements. In general, the in-
tegrals needed for the mean and covariance of the transition densities arising
from the LNA can be either determined explicitly or computed numerically.
Since P (ζ(ti+1)|ζ(ti)) is N(µ(ti),Σ(ti)), we have that P (X(ti+1)|X(ti)) is
N(Ωφ(t) +

√
Ωµ(ti),ΩΣ(ti)). Thus, the LNA estimates the variances of the

species abundances and the covariances between them and a transition from
X(ti) to X(ti+1) follows the state space equation

X(ti+1) = F (ti)X(ti) + c(ti) + εti , εti ∼N(0,Σε(ti)),(4.7)
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where for our model F (ti) = eJ∆i , c(ti) = Ω[φ(ti+1)−eJ∆iφ(ti)] and Σε(ti) =
ΩΣ(ti).

In general, we assume a measurement equation of the form

Y (ti) = κX(ti) + u(ti),(4.8)

where κ is a matrix, Y (ti), i= 1, . . . , T , are the observed data for a single
cell, and the u(ti)∼N(0,Σu(ti)) represent measurement errors with covari-
ance matrix Σu(ti). Note that κ accounts for the assumption that imaging
data may be proportional to molecular population size. State variables that
cannot be measured reduce the rank of the matrix. As in all our applica-
tions below, only the protein is imaged, κ will be a scalar and u(ti) will be
one-dimensional.

Let X= (X(t1), . . . ,X(tT ))
T and Y = (Y (t1), . . . , Y (tT ))

T . The joint den-
sity of Y or likelihood L(Y|θ) can be obtained by writing the system of
equations (4.7) for all discrete time points ti, i= 1, . . . , T as

BX= Z+C+ ε,(4.9)

where

B=



















I 0 · · · · · · · · · 0

−eJ∆1 I
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · · · · 0 −eJ∆T−1 I



















,

C= (c(t0), . . . , c(tT−1))
T
, Z= (e−J∆0X(0),0 . . .0)T

and ε∼N(0,Σε) with covariance matrix Σε = diag(Σε(t0), . . . ,Σε(tT−1)).
It follows that

X∼N(B−1(C+Z),B−1(Σε +Var(Z))(B−1)T ).(4.10)

The matrix formulation of the observational equation (4.8) for all time points
is

Y= κX+ u,(4.11)

where κ is the matrix that has κ along the diagonal and is zero otherwise,
and u= (u(t1), . . . , u(tT ))

T with u∼N(0,Σu). Hence, the likelihood L(Y|θ)
is [see also Komorowski et al. (2009)]

Y∼N(κB−1(C+Z),κB−1(Σε +Var(Z))(B−1)TκT +Σu).(4.12)

We assume that measurement errors u(ti) are i.i.d. normal so that Σu =
σ2
uI, but the approach can be adapted to other specifications of the error

covariance matrix.
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In situations where the sample size and/or the dimension of Y is large, the
density corresponding to (4.12) may be expensive to compute, as it requires
inversion of large matrices. Since the model for Y (ti) can be written in state
space form defined by equations (4.7) and (4.8), an equivalent form of (4.12)
that is easier to handle is obtained using the prediction error decomposition
with log likelihood

logL(Y; θ) =

T
∑

i=1

log f(Yti |Yt1 , . . . , Yti−1 ; θ)

(4.13)

=

T
∑

i=1

[

−dim(Yti)

2
log 2π− 1

2
log |Rti | −

1

2
eTtiR

−1
ti

eti

]

,

where eti = Yti − Ŷti|ti−1
is the prediction error, Ŷti|ti−1

= E(Yti |Yt1 , . . . ,

Yti−1 ; θ) is the optimal predictor of Yti given the information up to time
ti−1 and Rti is the variance matrix of the prediction error. These quantities
can be computed as part of the Kalman filter recursions (see Appendix A.3).

5. A hierarchical model for multiple cells. The full data matrix of an
experiment contains N multiple imaging time series

Ỹ = (Y(1),Y(2), . . . ,Y(N)),

where Y
(i) are the imaging data for a cell now indexed by i; i = 1, . . . ,N .

Bayesian hierarchical modeling [Gamerman and Lopes (2006)] provides a
natural framework to account for the cell-to-cell variability of kinetic pa-
rameters. Assuming that replicates are independent, the full likelihood for
all cells in the experiment is

L(Ỹ;θ) =

N
∏

i=1

L(Y(i)|θ(i)),(5.1)

where θ(i) denotes the vector containing all parameters for cell i and
L(Y(i)|θ(i)) is the likelihood for a single cell as derived above. In contrast to
assuming that a reaction j in all cells is described by exactly the same value
of the associated kinetic parameter θj , in a hierarchical model it is a sample
from a population distribution p(θj|Θj) which is governed by an unknown
parameter vector Θj quantifying the mean and variance of each hierarchical

parameter across the population of cells. Let θ = (θ(1), θ(2), . . . , θ(N)) denote
the matrix of parameter vectors and let p(θ|Θ) denote the joint distribution
of θ assuming

p(θ|Θ) =
∏

j

p(θj|Θj),
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where Θ is the vector of all hyperparameters. In the hierarchical model we
wish to infer upon the posterior p(Θ|Ỹ),

p(Θ|Ỹ)∝L(Ỹ;θ)p(θ|Θ)p(Θ),(5.2)

where p(Θ) denotes the prior distribution of the hyperparameters. This is
achieved by formulating an appropriate MCMC algorithm that samples from
p(Θ|Ỹ).

5.1. Translation inhibitor experiment. We start with the translation in-
hibition experiment, as it allows us to estimate the protein half life which
is then used as prior information for the other experiment. We assume that
under the influence of the translational inhibitor the level of protein synthe-
sis drops down to zero or possibly a small basal level τ2 in case inhibition
is not fully achieved while the initial protein degrades at per capita rate
δ2 [Gordon et al. (2007)]. The resulting model thus does not depend on the
mRNA process and simplifies to the univariate case whereX(t) =X2(t) with
a single macroscopic equation

dφ2(t)

dt
= τ2 − δ2φ2(t).

The LNA noise process is thus one-dimensional η = (η2), where

B(t) =
√

τ2 + δ2φ2(t)

and J = −δ2. The following parameters are assumed to be hierarchical

δ
(i)
2 , τ

(i)
2 , σ

(i)
u , i= 1, . . . ,N . We reparameterize τ̃

(i)
2 = κτ

(i)
2 , which significantly

improves convergence of the estimation algorithm. Details on the specifica-
tion of the distributions of the parameters are given in Appendix A.4.1. As

the initial conditions φ
(i)
2 (0) may be very different across cells, in particu-

lar, in experiments where the cell behavior is not synchronized, we estimate
them independently for each cell rather than assuming a hierarchical struc-
ture. For simplicity, the scaling parameter κ is assumed to be constant for
all cells.

5.2. Transcription inhibitor experiment. Similarly to the previous ex-
periment, we assume that under the influence of a transcriptional inhibitor
mRNA synthesis drops to some small basal level τ1 while the initial amount
of mRNA degrades and is also translated into protein which then degrades.
The model is thus given by the full two-species model with β(t) = τ1. As
only the protein is imaged, the measurement equation is formulated in the

same way as for the previous experiment. We specify τ
(i)
1 , δ

(i)
1 , α(i) and σ

(i)
u

as hierarchical parameters (see Appendix A.4.2 for details) and use the es-
timation results for the protein degradation parameter from the translation
inhibitor experiment as the informative prior. Our simulation studies show
that this is a crucial step, as without this prior the other parameters were
not identifiable due to the mRNA not being observable.
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Table 2

Results for simulated data

Parameter True mean Estimated mean True variance Estimated variance

Translation inhibitor experiment

τ2 3.675 · 104 182 (54,1408) 6.345 · 108 25 · 103 (2 · 103,1.5 · 106)

τ̃2 3.675 3.61 (2.76,4.55) 6.345 9.48 (4.84,18.70)

δ2 0.576 0.56 (0.54,0.57) 0.005 0.004 (0.002,0.006)

σ2
u 12 11.86 (11.02,12.54) 3 3.89 (1.34,7.06)

κ 10−4 0.02 (0.00,0.05) – –

τ2 3.675 3.40 (2.23,4.69) 6.345 6.54 (1.57,17.14)

τ̃2 3.675 3.43 (2.42,4.49) 6.345 6.67 (1.82,17.93)

δ2 0.576 0.56 (0.53,0.58) 0.005 0.004 (0.001,0.009)

σ2
u 12 12.27 (11.05,13.25) 3 5.12 (1.61,11.31)

κ 1 1.01 (0.82,1.17) – –

Transcription inhibitor experiment

τ1 40 37.40 (30.56,43.39) 2 5.172 (1.576,9.84)

δ1 0.2 0.193 (0.183,0.208) 0.005 0.0080 (0.00013,0.0173)

α 3.5 3.731 (2.557,4.940) 2 1.483 (0.684,4.056)

σ2
u 10 9.124 (8.275,10.144) 2 1.615 (0.363,4.602)

κ 0.25 0.239 (0.221,0.254) – –

True values and posterior estimates of the mean and variance of the distribution of hier-
archical parameters for simulated data. κ is not hierarchical. For the translation inhibitor

model two cases are considered: large number of molecules with φ
(i)
2 (0) = 2×106, κ= 10−4

(top), and small number of molecules with φ
(i)
2 (0) = 500, κ= 1 (bottom). For the transcrip-

tion inhibition model, one case is considered with φ
(i)
1 (0) = 500, φ

(i)
2 (0) = 2000. Estimates

are medians (with 95% interval in brackets) of the posterior chains from 40 K iterations
after convergence is achieved. All rates are per hour. The choice of rate parameters was
motivated by values that generate artificial data with approximately similar dynamics as
the real data and using preliminary results from fitting ODEs to aggregate data.

6. Results.

6.1. Simulation studies. In order to develop the MCMC estimation al-
gorithms, we generated artificial data of similar sample size and sampling
frequency as the observed data for chosen parameter values as displayed
in Table 2. Such simulation studies are vital to developing the estimation
algorithm, assessing its performance, checking for bias and gaining an un-
derstanding of the precision with which parameters can be estimated. We
also study the simpler case of the translation inhibition experiment to com-
pare estimation for two scenarios, namely, a system with a large and a small
number of molecules where the set parameter κ was adjusted to give values
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in a similar range so that the measurement error had a similar impact in
both scenarios. Artificial data was generated with exact intrinsic stochastic-
ity using the stochastic simulation algorithm [Gillespie (1977)] and normal
measurement error.

Table 2 summarizes estimation results for the simulation study confirming
that estimation based on the LNA is successfully reproducing posterior esti-
mates with reasonable precision. Retrieving both κ and measurement error
variance is a significant achievement, not least because it gives us an idea of
the size of the molecular populations. The simulation study shows that κ is
estimated with more precision for the smaller molecular system. A possible
reason for this is that since the intrinsic noise scales with factor

√
κ between

the measurement and population level, the information about the intrinsic
noise is essential in identifying κ. For larger population sizes the trajecto-
ries become smoother and the intrinsic noise will be less informative about
κ. We thus conjecture that while it is the stochastic approximation which
facilitates calibration of the model in terms of population size, it will be
less successful in doing so if the molecular population is large and a simpler
ODE approximation may be assumed to be adequate.

We also developed and studied performance of our estimation algorithm
for the transcription inhibitor experiment via a simulation study as re-
ported in Table 2. Inference is more challenging for the two-dimensional
model when only one variable is measurable. The parameter traces tend to
be more correlated and more time is needed on fine-tuning the algorithm.
To enhance efficiency over the conventional Metropolis–Hastings algorithm,
we implemented a modified MCMC algorithm based on the Metropolis–
Hastings method. In particular, we used block sampling [Gamerman and
Lopes (2006)] in combination with the multiple-try Metropolis (MTM) al-
gorithm with antithetic sampling as in Craiu and Lemieux (2007). The orig-
inal MTM algorithm [Liu, Liang and Wong (2000)] generates a number of
proposals for each parameter and selects one with a probability that is pro-
portional to its likelihood. We then construct a backward step from the
chosen proposal so that the detailed balance condition is satisfied and then
accept or reject this proposal in the conventional Metropolis manner. The
antithetic multiple correlated try Metroplis (MCTM) method incorporates
negative correlation into this framework to maximize the Euclidean distance
between these proposals. Together with the reparameterization it was found
to improve convergence of the estimation algorithm.

6.2. Results for experimental data. The results for the real data are given
in Table 3 and are plotted in Figures 3 and 4 for the translation and tran-
scription inhibition, respectively. Diagnostic tests applied to the standard-
ized prediction error (A.13) computed for the mean posterior parameter es-
timates indicate that residuals do not exhibit significant autocorrelation and
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Table 3

Results for experimental data

Parameter Estimated mean Estimated variance

Translation inhibitor experiment

τ2 50.67 (24.12,114.40) 1086.40 (206.41,6155.13)

τ̃2 3.51 (2.84,4.22) 5.07 (2.35,9.59)

δ2 0.57 (0.54,0.59) 0.004 (0.002,0.007)

σ2
u 6.36 (5.11,7.65) 20.07 (10.25,35.47)

κ 0.07 (0.02,0.12) –

Transcription inhibitor experiment

τ1 3.53 (2.64,5.02) 9.38 (3.79,23.90)

τ̃1 1.53 (1.10,2.55) 4.29 (0.93,21.12)

δ1 0.13 (0.12,0.15) 0.004 (0.001,0.013)

α 3.93 (3.27,4.80) 6.09 (3.35,11.11)

α̃ 0.44 (0.34,0.62) 0.08 (0.04,0.17)

σ2
u 5.14 (4.82,5.90) 1.09 (0.55,5.94)

κ 0.11 (0.09,0.14) –

Posterior estimates of the mean and variance of the distribution
of hierarchical parameters for experimental data from translation
and transcription inhibitor experiments. κ is not hierarchical. All
rates are per hour. Estimates were computed from posterior chains
as described in Table 2.

their distributions are compatible with normality. We use the coefficient of
variation CV (ratio of standard deviation to mean) to compare between-cell
variability of different parameters.

Degradation rates. Out of all estimated rates it seems the degradation
rates for protein and mRNA exhibit the least cell-to-cell variation. The
mean protein degradation rate was estimated to be around 0.576, which
corresponds to a half-life of approximately 1.2 h. The estimated cell-to-cell
variation in the degradation rate is 0.063 (standard deviation) and the CV is
0.1, indicating that there is only small variation between cells. The 2-sigma
band for the estimated density of the protein degradation rate of the hier-
archical model (red line in Figure 3 top left) is (0.45–0.70). Thus, almost
all cells in the sample exhibit a mean protein half-life between 1 h and 1.5
h. The mRNA degradation rate was estimated around 0.137 (Figure 4 top
left), corresponding to a half-life of 5 h. The cell-to-cell variation is about
0.02 (standard deviation) and is also very small with a CV of 0.05. From the
2-sigma band we find that almost all cells have an mRNA half-life between
4 h and 7 h.
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Fig. 3. Translation inhibitor experiment. Estimated posterior densities of parameters δ2
(top left), τ2 (top right) and σ2

u (bottom left) from experimental data of the translation
inhibitor experiment. Black solid lines give estimated posterior densities for the single cells
using kernel estimation. Red solid curve gives their estimated joint density as specified by
the hierarchical model. The scatterplot (bottom right) gives the estimated standard devia-
tion σu of the measurement error against estimated initial condition of the macroscopic
solution φ2(0) for each cell. The empirical Spearman correlation coefficient is 0.77.

Transcription and translation rates. The rate τ1 under transcriptional
inhibition is smaller than the rate τ2 under translational inhibition. This is
reasonable, as population size for protein can be expected to be larger than
for mRNA. The CVs are 0.67 and 0.87 for τ2 and τ1, respectively, indicating
considerably more between-cell variability than for the degradation rates.
This may also be due to the fact that τ1 and τ2 will vary with cell size
and abundance. The translation rate α is estimated around 4 with similar
cell-to-cell variation as transcription rates with a CV of 0.62. We note that
neither τ2 nor τ1 appear to be close to zero, indicating that neither treatment
achieved complete inhibition. Our estimation shows that degradation rates
show less variability than transcription rates. It is interesting to speculate
that this is because of the extra variability that would arise from a combina-
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Fig. 4. Transcription inhibitor experiment. Estimated posterior densities of parameters
δ1 (top left), τ1 (top right), σ2

u (middle left) and α (middle right) from experimental
data of the transcription inhibitor experiment. Black solid lines give estimated posterior
densities for the single cells using kernel estimation. Red solid curve gives their estimated
joint density as specified by the hierarchical model. The scatterplots give the estimated
standard deviation σu of the measurement error against estimated initial conditions of
the macroscopic equations φ1(0) (bottom left) and φ2(0) (bottom right). The empirical
Spearman correlation coefficients are 0.11 and 0.63, respectively.
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tion of the bursting structure that has been observed in genes [Harper et al.
(2011), Suter et al. (2011)] and the related effect of chromatin remodeling
and transcription factor variability.

Scaling factor κ, molecular population size and measurement error. The
scaling factor κ was estimated to be around 0.07 and 0.10 in the translation
and transcription inhibitor experiment, respectively. Both values overlap
largely in their posterior distribution, indicating that the scaling is similar
between the two experiments, which is reasonable as the experimental proto-
col with respect to taking the images was similar. Simple plug-in estimates of
the initial molecular population sizes can be obtained from the Markov chain
traces. For the translation inhibitor experiment the average (over the cells)
initial protein abundance is estimated to be around 1260 (median) with 95
% central range (660–3660) and similar for the transcription inhibitor ex-
periment [1530 (median) with 95 % central range (880–3290)]. The average
initial mRNA abundance is smaller [370 (median) with 95% central range
(70–1150)]. There is considerable variation between cells in the initial con-
ditions and it becomes clear that the variation seen in the data of Figure 2
is predominantly due to the cell-to-cell variation in initial population size.
The estimated variance σ2

u of the measurement error is of similar size in both
experiments. We find that the individual cell estimates of the measurement
error variance correlate strongly with the initial protein abundance of the
cell in both experiments (Figures 3 and 4, bottom right). The correlation
between the measurement error variance and the initial mRNA population
(Figure 4, bottom left) is weaker, which is also reasonable as the imaging
data are more directly related to protein rather than mRNA abundance.

7. Summary and discussion. In this study we have introduced a Bayesian
hierarchical model based on the LNA that can be used in the context of
stochastic compartmental population models. The model has the potential to
tease out different sources of variability that are relevant to inference about
transcriptional, translational and degradational processes at the molecular
level, namely:

• intrinsic stochasticity due to the natural stochastic nature of the birth
and death processes involved in chemical reactions,

• extrinsic variability, that is, arising from the cell-to-cell variation of kinetic
parameters associated with these processes, and

• measurement noise which is additive and not part of the dynamic process.

We focus on drawing inference about these sources of stochasticity from
real experimental time series data in molecular systems biology. The two
experiments considered here are an example of a scenario where the use of
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a rich stochastic model in combination with a Bayesian approach to infer-
ence can deal with shortcomings such as unobservable population species.
It demonstrates that, provided the data are indeed of the kind to display
intrinsic stochasticity, that is, come from a single cell, assuming a stochas-
tic model is more informative than an ODE approach even if the latter fits
the mean well. Here it allowed us to decouple the different sources of noise
and to obtain an estimate of the scaling factor κ, leading to inference about
the size of the underlying molecular species. Pilot simulation studies are
an essential tool not only to develop the estimation algorithm but also to
study parameter identifiability. The posterior information about the kinetic
parameters obtained here will allow us further to study nonlinear transcrip-
tion functions and spatial characteristics of the gene under consideration,
that is, Prolactin, in spatio-temporal experiments using the same reporter
construct.

Our simulation studies confirm that the LNA works well for inference in
our model, also for smaller molecular population sizes. This is in line with
results in Komorowski et al. (2009). Recently, Stathopoulos and Girolami
(2013) combined the LNA with their Riemann manifold MCMC sampling
methods and found that this combined approach is both statistically and
computationally efficient for reaction networks also in the case of smaller
populations. A study by Wallace et al. (2012) provides new insight on the
range of validity of the LNA and supports its applicability to systems such as
studied in this paper. The rigorous presentation of the LNA by Kurtz (1971,
1981) clearly states the underlying assumptions, in particular, the need to
restrict to a finite time horizon before taking the limit Ω → ∞ except in
the case when the ODE has a single stable stationary solution. Therefore,
this method cannot be expected to work when molecular numbers are too
small. The threshold population size above which the method gives good
results will depend on the nature of the dynamical system and the time
horizon set. For example, a system near to a bifurcation or with multiple
attractors is expected to have a significantly larger threshold than one with
a single globally attracting attractor. Similarly, the LNA is likely to struggle
when the ODE solution in the LNA is not equal to the mean value of the
stochastic process. An obvious remedy is to reset the LNA by allowing for
the initial conditions of the ODE to evolve conditional on the observed data
and recent work by Fearnhead, Giagos and Sherlock (2013) shows that this
improves estimation in a nonlinear predator-prey interaction model. We did
not encounter this problem because in our model the Jacobian does not
depend on the deterministic solution. We are also currently studying the
use of the LNA for inference in systems with small populations and with
nonlinear switch-type transcription functions and so far have found that the
LNA copes well with the nonlinearity of the switch function and only begins
to break down for extremely small population sizes.
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The hierarchical model provides a useful and natural approach to study
and quantify the cell-to-cell variability between kinetic parameters. The re-
sulting model is complex and the use of the LNA has been crucial to facilitate
its inference. Computational feasibility and ability to link between the model
and experimental data through a realistically modeled measurement process
are essential for studying problems in systems biology where in the future
many more single cell data sets from complex systems will become available.

APPENDIX

A.1. Experiment. GH3-DP1 cells containing a stably integrated 5kb hu-
man prolactin-destabilised EGFP reporter gene [Harper et al. (2011)] were
grown in Dulbecco’s minimal essential medium plus 10% FCS and main-
tained at 37◦C 5% CO2. Cells were seeded onto 35-mm glass coverslip-based
dishes (IWAKI, Japan) and cultured for 20 h before imaging. The dish was
transferred to the stage of a Zeiss Axiovert 200 microscope equipped with
an XL incubator (maintained at 37◦C, 5% CO2, in humid conditions). Flu-
orescence images were obtained using a Fluar x20, 0.75 numerical aperture
(Zeiss) dry objective. Stimulus (5 µM forskolin and 0.5 µM BayK-8644) to
induce an increase in prolactin gene expression was added directly to the
dish for 6 h, followed by treatment with 10 µg/ml cycloheximide (for pro-
tein degradation rate) or 3 µg/ml actinomycin D (for mRNA degradation
rate) and imaged for at least a further 15 h.

A.2. The linear noise approximation. The LNA approximates transi-
tions densities by a Gaussian distribution with an appropriately-defined
covariance matrix. It is usually derived as an approximation to the mas-
ter equation by van Kampen’s system-size expansion [Van Kampen (1976,
1997)]. However, here we give a simplified derivation of the LNA by Wallace
(2010) [see also Wilkinson (2011)] which is less general than Kurtz (1971)
but more intuitive, as it treats births and deaths separately. Start by re-
expressing the rates explicitly as functions of the system size Ω,

Ωwj

(

X(t)

Ω

)

.

Let w+
j and w−

j denote reaction rates associated with birth and death, re-

spectively, and let εj(t) ∼ N(0,1). Then equation (4.2) can be expressed
as

X(t+ τ) =X(t) + τΩ

m
∑

j=1

[

w+
j

(

X(t)

Ω

)

−w−
j

(

X(t)

Ω

)]

vj

+
√
τΩ

m
∑

j=1

√

w+
j

(

X(t)

Ω

)

+w−
j

(

X(t)

Ω

)

vjεj(t)
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or, equivalently,

X(t+ τ) =X(t) + τΩ
m
∑

j=1

Aj

(

X(t)

Ω

)

vj

(A.1)

+
√
τΩ

m
∑

j=1

√

Bj

(

X(t)

Ω

)

vjεj(t),

where

Aj

(

X(t)

Ω

)

=w+
j

(
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Ω

)

−w−
j

(

X(t)

Ω

)

,

Bj

(

X(t)

Ω

)

=w+
j

(

X(t)

Ω

)

+w−
j

(

X(t)

Ω

)

.

We now make the Ansatz that X(t) can be decomposed into a deterministic
solution with a stochastic perturbation the variance of which scales with√
Ω,

X(t) = Ωφ(t) +
√
Ωζ(t),(A.2)

where φ(t) is the macroscopic or ODE solution for the concentration and
ζ(t) is a stochastic process. Inserting this into (A.1) and dividing by Ω gives

φ(t+ τ) +
1√
Ω
ζ(t+ τ) = φ(t) +

1√
Ω
ζ(t)

+ τ

m
∑

j=1

Aj

(

φ+
1√
Ω
ζ

)

vj(A.3)

+

√

τ

Ω

m
∑

j=1

√

Bj

(

φ+
1√
Ω
ζ

)

vjεj(t).

Applying a Taylor expansion to Aj(
X(t)
Ω ) and Bj(

X(t)
Ω ) about the determin-

istic term φ gives

Aj

(

φ+
1√
Ω
ζ

)

≈Aj(φ) +
1√
Ω
ζDφ(Aj(φ)) + · · ·

and

Bj

(

φ+
1√
Ω
ζ

)

≈Bj(φ) +
1√
Ω
ζDφ(Aj(φ)) + · · · .

Inserting these into (A.3) and collecting terms of order Ω0 give

φ(t+ τ) = φ(t) + τ
∑

j

Aj(φ)vj
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or, expressing the sum in matrix form,

φ(t+ τ) = φ(t) + τA(φ),

which translates into the macroscopic ODE model

dφ(t)

dt
=A(φ).(A.4)

Next, collecting terms of order Ω−1/2 gives an equation for the noise process

ζ(t+ τ) = ζ(t) + τ
∑

j

Dφ(Aj(φ))vjζ(t) +
√
τ
∑

j

√

Bj(φ)vjεj(t).

The corresponding SDE or Langevin form is

δζ(t) = J(t)ζ(t)dt+
∑

j

√

Bj(φ)dWj(t),(A.5)

where Wj(t) is a Wiener process, one for each population, and J(t) is the
Jacobian matrix of the macroscopic equations

Jij(t) =
∂Aj(φ)

∂φi
=

∂[w+
j (φ(t))−w−

j (φ(t))]

∂φi
.

Equations (A.2), (A.4) and (A.5) together specify the Linear Noise Approx-
imation (LNA) derived by Van Kampen (1997).

A.3. Kalman filter and prediction error. For ease of notation we use t

instead of ti and t±1 instead of ti±1. The state space model defined by (4.7)
and (4.8) has the form

Xt+1 = FtXt + ct + εt, εt ∼N(0,Σε,t),(A.6)

Yt = κtXt + ut, ut ∼N(0,Σu,t),(A.7)

where the structure of the matrices Ft, ct,Σε,t in the state equation (A.6) is
invoked by the LNA. The measurement equation (A.7) is general, allowing
κ= κt and Σu =Σu,t to vary over time. The Kalman filter is defined by the

recursions given in the following prediction and updating equations. Let X̂t

denote the optimal linear estimator of Xt based on the information available
at time t and let Pt denote its variance matrix. Based on information up to
time t− 1, we get the prediction equations

X̂t|t−1 = Ft−1X̂t−1 + ct−1,(A.8)

Pt|t−1 = Ft−1Pt−1F
T
t−1 +Σε,t−1.(A.9)



QUANTIFYING INTRINSIC AND EXTRINSIC NOISE USING THE LNA 21

The updating equations when Yt becomes available are

X̂t = X̂t|t−1 + Pt|t−1κ
T
t R

−1
t (Yt − κtX̂t|t−1),(A.10)

Pt = Pt|t−1 − Pt|t−1κ
T
t R

−1
t κtPt|t−1,(A.11)

where

Rt = κtPt|t−1κ
T
t +Σu,t(A.12)

is the variance matrix of the prediction error

et = Yt − κtX̂t|t−1.(A.13)

The prediction error in (A.13) and its variance matrix (A.12 ) are used for
the likelihood (4.13).

A.4. Further details on specification of parameter distributions.

A.4.1. Translation inhibition experiment. The hierarchical parameters
are assumed to have distributions

δ
(i)
2 ∼ Γ(µδ2 , σ

2
δ2), τ̃

(i)
2 ∼ Γ(µτ̃P , σ

2
τ̃P ), σ2,(i)

u ∼ Γ(µσu
, σ2

σu
),

where Γ(µ(·), σ
2
(·)) denotes a gamma density parameterized to have mean µ(·)

and variance σ2
(·). The hyperparameters are ΘH = (µδ2 , σ

2
δ2
, µτ̃2 , σ

2
τ̃2
, µσu

, σ2
σu
).

For the prior distribution of ΘH we assume a product of vague exponential
densities with parameter 104 for each element of ΘH . We also reparame-

terize φ̃
(i)
2 (0) = κφ

(i)
P (0) assuming prior distributions φ̃

(i)
2 (0)∼ Exp(104) and

κ∼Exp(104). Let Θ = (ΘH , φ̃2(0), κ), where φ̃2(0) denotes the vector of ini-
tial conditions for cells i= 1, . . . ,N , then we wish to estimate Θ via their pos-
terior distribution as given in (5.2). We use a standard Metropolis–Hastings
algorithm [Gamerman and Lopes (2006), Chib and Greenberg (1995)] to
generate a sample from the posterior distribution.

A.4.2. Transcription inhibition experiment. To improve convergence of
the estimation algorithm for the two-dimensional model, we reparameterized

τ̃
(i)
1 = κα(i)τ

(i)
1 and α̃(i) = κα(i), as well as the initial conditions φ̃

(i)
1 (0) =

κα(i)φ
(i)
1 (0) and φ̃

(i)
2 (0) = κφ

(i)
2 (0). The hierarchical parameters are assumed

to have the following distributions:

δ
(i)
1 ∼ Γ(µδ1 , σ

2
δ1), τ̃

(i)
1 ∼ Γ(µτ̃1 , σ

2
τ̃1),

α̃(i) ∼ Γ(µα̃, σ
2
α̃), σ2,(i)

u ∼ Γ(µσu
, σ2

σu
).

We have used a vague prior for σ
2,(i)
u rather than importing a prior informed

by the translation inhibitor experiment, as it is possible that the setting
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of the experiment and the use of a camera might have resulted in a very
different variance of the measurement error. The vector of hyperparameters
is ΘH = (µδ1 , σ

2
δ1
, µτ̃1 , σ

2
τ̃1
, µα̃, σ

2
α̃, µσu

, σ2
σu
) and the full parameter vector is

Θ = (ΘH , φ̃1(0), φ̃2(0), κ), where φ̃1(0) and φ̃2(0) denote the vectors of un-
known initial conditions for mRNA and protein, respectively. Similar to the
previous experiment, the prior for each element of Θ was Exp(104) except
we set µδ2 = 0.57 and σ2

δ2
= 0.004, importing the posterior results on protein

degradation from the translation inhibitor experiment.
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