Non-self RNA rewires IFNβ signaling: A model of the innate immune response

Zbigniew Korwek, Maciej Czerkies, Joanna Jaruszewicz-Błońska, Wiktor Prus, Ilona Kosiuk, Marek Kochańczyk, <u>Tomasz Lipniacki</u>

Laboratory of Modeling in Biology and Medicine

Institute of Fundamental Technological Research

Polish Academy of Sciences

→ "Antagonism between viral infection and innate immunity at the single-cell level"

Motivation

by Marek Kochańczyk Friday, 2:20–2:40pm

RESTING

Kinetics of IFNβ signaling and accumulation of ISGs

Kinetics of IFNβ signaling, continued

- rapid STAT1/2 dephosphorylation after IFNβ washout
- partial STAT1/2 dephosphorylation due to IFNAR endocytosis
- recovery of IFNAR after 4 h-long break and strong response to the second pulse of IFNβ

Stimulation with poly(I:C)

leads to activation of RNase L and PKR and depletion of IFNAR

by degradation of IFNAR mRNA and inhibition of translation

IFNβ

IFNAR

and...

termination of STAT1/2 activity

poly(I:C)-activated RNase L:

 but leaves almost intact mRNAs of NF-κB- and IRF3-regulated genes, including IFNβ (*will come back to this*)

> In this way, poly(I:C) with the help of RNase L and PKR fully terminates STAT1/2 signaling.

Computational model (ODEs) advertisement

242628

242628

024

Second poly(I:C) arm

Poly(I:C) activates transcription factors NF- κ B and IRF3 leading to synthesis of IFN β and interleukin-6 and -8.

poly(I:C)

4 10

2

IFNB

Time [h] 0 6 12 24 26 28 34

Time [h]

NFKBIA (ΙκΒα)

TNFAIP3 (A20)

CXCL8 (IL8)

IFNB1 (IFNβ)

IL6

warning next cell layers

Knock-out of RNase L and PKR leads to accumulation of A20 and I κ B α and thus attenuation of IRF3 phosphorylation (IRF3 activation is indispensable for IFN β synthesis).

Computational model: ODEs, big but "finite", constrained by data (identifiable parameters)

Model complexity, data used for parameter fitting, and the fitted computational model

Model complexity	
Number of variables in the model	53
Number of independent model parameters	38

Statistics of data used for fitting (WT and four A549 KO cell lines)	
Number of experimentally measured variables	25
Number of independent experimental data points used for parameter fitting	2915
(dimensionality of the measurement vector space)	
Average multiplicative error between experimental replicates	1.24
(for Western blots)	

Parameter fitting	
Average multiplicative error between data and the worst of 10 best fits	1.49
Max pairwise error between 10 best fits	1.04
Maximum s.d. of log-fitted parameters (among 10 best fits)	0.19

Identifiability reached by nondimensionalization and systematic model reduction

Practical identifiability: "convergence" of independent stochastic fits

Conclusions

In IFN β -primed cells, poly(I:C) via activation of RNase L and PKR:

- terminates STAT1/2 activity and leads to degradation of STAT1/2-regulated mRNAs,
- triggers activation of NF-κB and IRF3 leading to synthesis of IFNβ and IL-6, IL-8.

Thus poly(I:C), a viral RNA analog:

turns IFN β -responding cells (antiviral state) into IFN β -producing cells (signaling state)

The process involves five regulatory modules and is recapitulated by an identifiable model of innate immune response to non-self RNA.

Questions?

What happens when naive cells are stimulated by poly(I:C)?

Simply:

- poly(I:C) will activate NF-κB and IRF3 leading to production of IFNβ,
- IFNβ will trigger STAT1/2 activation,
- poly(I:C) will activate also RNase L and PKR
- RNase L and PKR will lead to depletion of IFNAR and termination of STAT1/2 activity.

As a consequence we see short pulse of STAT1/2 activity.

Thank you!

Norway grants This research is funded by the **Norwegian Financial Mechanism GRIEG-1** (grant 2019/34/H/NZ6/00699, operated by the National Science Centre, Poland).

Conundrum

IFNB

poly(I:C)

95

34

55

34 kDa

No IFNβ secretion after poly(I:C) in IRF3 KO cells

Ergo: PKR and Rnase L dKO will attenuate IFNβ secretion after poly(I:C).

3 experimental replicates:
IFNβ detectable
Ø Ø Ø IFNβ nondetectable

NO, the opposite

Secretion of IFN β by A549 WT, PKR KO, RNase L KO, and PKR & RNase L double KO cells after stimulation with poly(I:C). ELISA measurements of IFN β secretion after stimulation with poly(I:C) (0.1 µg/ml) in indicated time points. Error bars represent s.e.m. for two technical replicates in each experiment.

ANY SENSE?

Yes, when the virus fights back!

