Effect of electron-acceptor content on the efficiency of regioregular double-cable thiophene copolymers in single-material organic solar cells.

Massimiliano Lanzi†‡ and Filippo Pierini§

†Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum-University of Bologna, Bologna 40136, Italy

§Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland

Supporting Information
Synthesis of poly(3-decylthiophene) (PT10H)

3-Decylthiophene (Sigma-Aldrich Merck, Product id. 456357) was converted to 3-decyl-2,5-dibromothiophene and subsequently polymerized to poly(3-decylthiophene) following the procedure described in M. Lanzi et al, *Polymer, 2003, 44*, 535-545. Yield: 44%.

1H-NMR (CDCl$_3$, ppm): δ 6.97 (1H, s, H4Th); 2.77 (2H, m, ThCH$_2$); 1.70-1.11 (16H, bm, CH$_2$); 0.90 (3H, t, CH$_3$).

13C-NMR (CDCl$_3$, ppm): δ 139.88 (ThC3); 133.61 (ThC5); 130.73 (ThC2); 128.47 (ThC4); 31.86 (CH$_2$Th); 30.51, 30.08, 29.96, 29.77, 29.42, 29.31, 29.23, 29.04 (central CH$_2$), 14.15 (CH$_3$).

FT-IR (Ge, cm$^{-1}$): 3054, 2924, 2855, 1512, 1461, 827, 726.

$M_n = 22$ KDa; $M_w/M_n = 1.25$
Figure S1. GPC of the examined polymers (intensity vs. elution time).

Figure S2. UV-Vis absorption spectrum of PT10Br in film on a quartz slide.
Figure S3. Efficiency of PT10H/PCBM cells heated at 150°C over time (average PCE of four devices). The UV samples were exposed to UV-light for 30 min.