Importins promote high-frequency NF- κ B oscillations increasing information channel capacity

Zbigniew Korwek⁼, Karolina Tudelska⁼, Paweł Nałęcz-Jawecki⁼, Maciej Czerkies⁼, Wiktor Prus, Joanna Markiewicz, Marek Kochańczyk, and Tomasz Lipniacki

(= - equal contribution)

Computational model description

Supplementary information: Additional file 1

1 Parameters and reactions

Table A. Notation guide

Symbol	Description
TNF	TNFa trimers
$\mathrm{TNFR}_{\mathrm{i}}$	inactive TNFR receptors
$\mathrm{TNFR}_{\mathrm{a}}$	active TNFR receptors
IKKK _n	neutral form of IKKK
IKKK _a	active form of IKKK
IKK _i	inactive form of IKK
IKK _{ii}	inactive intermediate form of IKK
IKK _n	neutral form of IKK kinase
IKK _a	active form of IKK
$A20_{mRNA}$	A20 transcript
A20	A20 protein
$I\kappa B\alpha_{mRNA}$	$I\kappa B\alpha$ transcript
$I\kappa B\alpha_c$	cytoplasmic IkBa
$I\kappa B\alpha_{c,p}$	phosphorylated cytoplasmic I κ B α
$I\kappa B\alpha_n$	nuclear I κ B α
$I\kappa B\alpha_{n,\mathbf{e}}$	nuclear $I\kappa B\alpha$ bound to an exportin
$\rm NF\kappa B_{c}$	cytoplasmic NF-κB
$NF\kappa B_{c,\mathbf{i}}$	cytoplasmic NF- κ B bound to an importin
$NF\kappa B_n$	nuclear NF- κB
$NF\kappa B_{c} \cdot I\kappa B\alpha_{c}$	cytoplasmic NF- κ B·I κ B α complexes
$NF\kappa B_{c}\boldsymbol{\cdot}I\kappa B\alpha_{c,p}$	phosphorylated $I\kappa B\alpha$ complexed with NF- κB in the cytoplasm
$NF\kappa B_n{\boldsymbol{\cdot}}I\kappa B\alpha_n$	nuclear NF- $\kappa B \cdot I \kappa B \alpha$ complexes
$NF\kappa B_n{\boldsymbol{\cdot}}I\kappa B\alpha_{n,\mathbf{e}}$	nuclear complex of NF- κB and $I\kappa B\alpha$ bound to an export in
$g^i_{\mathrm{I}\kappa\mathrm{B}lpha}$	state of the i^{th} I κ B α gene copy, discrete random variable: $g^i_{I\kappa B\alpha} \in \{0, 1\}$
$g^i_{ m A20}$	state of the i^{th} A20 gene copy, discrete random variable: $g^i_{A20} \in \{0, 1\}$

Parameter	Symbol	Value	Remarks	Refs
C:N ratio = $\frac{\text{Volume of cytoplasm}}{\text{Volume of nucleus}}$	$k_{\rm v}$	5		
Number of TNFRs	R	735	The median number of receptors is assumed equal 735, and this value was used in deterministic simulations. In stochastic simulations, the number of TNFRs is drawn from log-normal distribution with mean $= 2 \times 10^3$ and $\sigma = \sqrt{2}$, which gives median $= \text{mean} \times \exp(-1) \approx 7 \times 10^2$. $R = TNFR_{\rm a}(t) + TNFR_{\rm i}(t)$	
Number of IKKK molecules	$K_{\rm N}$	10^{5}	$K_{\rm N} = I\!K\!K\!K_{\rm n}(t) + I\!K\!K\!K_{\rm a}(t)$	[T10]
Number of IKK molecules	$K_{\rm NN}$	2×10^5	$K_{\rm NN} = IKK_{\rm n}(t) + IKK_{\rm a}(t) + IKK_{\rm i}(t) + IKK_{\rm ii}(t)$	[L07]
Number of NF-κB molecules	$NF\kappa B_{ m tot}$	10 ⁵	The median number of NF- κ B molecules that can be imported into the nucleus is assumed equal 70 000, whereas the median number of inert (non- translocatable) NF- κ B molecules (that are bound to inhibitors other than I κ B α and in response to TNF are very slowly degraded or not degraded) is as- sumed 30 000. These numbers are used for deter- ministic simulations. In stochastic simulations, both molecule numbers are drawn independently from an experimental distributions of NF- κ B levels (shown in Fig. 2b in the main text) which has been rescaled so that the median number of translocable NF- κ B molecules is 70 000 and median of non-translocatable NF- κ B molecules is 30 000.	[this study]
Number of IkBa gene copies	N_{I}	2		[T10]
Number of A20 gene copies	$N_{\rm A}$	2		[T10]

Table B. Cell parameters

(For references, see page 4.)

Reaction	Rate	Co efficients	Value	References						
TNFR activation and signal transduction cascade										
$TNF \rightarrow \varnothing$	$c_{ m deg}$	$c_{ m deg}$	$10^{-4} \mathrm{s}^{-1}$	[this study]						
$TNFB_{i} \rightarrow TNFB_{c}$	$k_{\rm b} \cdot TNF$	$k_{ m b}$	$1.2 \times 10^{-5} \mathrm{s}^{-1}$	[T10]						
	TNF_{cell}	TNF_{cell}	6×10^{4} (*)	(see footnote)						
$\mathrm{TNFR}_{\mathrm{i}} \leftarrow \mathrm{TNFR}_{\mathrm{a}}$	$k_{ m f}$	$k_{ m f}$	$1.2 \times 10^{-3} \text{ s}^{-1}$	[T10]						
$\mathrm{IKKK}_\mathrm{n} \to \mathrm{IKKK}_\mathrm{a}$	$\frac{k_{\rm a} \cdot k_{\rm A20}}{1} \cdot TNFR_{\rm a}$	k_{a}	$2 \times 10^{-5} \text{ s}^{-1}$	[this study]						
	$\frac{\kappa_{A20} + A20}{k}$	$\frac{\kappa_{A20}}{k}$	10^{-2} s^{-1}	[110] [T10]						
$\frac{1}{1} \frac{1}{1} \frac{1}$	$\frac{\kappa_{\rm i}}{k_{\star} \cdot IKKK^2}$	$\frac{\kappa_1}{k_2}$	$\frac{10}{6 \times 10^{-10} \text{ s}^{-1}}$	[T10] [T10]						
	$\frac{k_1 \cdot mm_a}{k_2}$	$\frac{k_1}{k_2}$	5×10^3	[110]						
$\rm IKK_a \rightarrow \rm IKK_i$	$\frac{k_3}{k_2} \cdot (k_2 + A2\theta)$	$k_2 \\ k_3$	$2 \times 10^{-3} \mathrm{s}^{-1}$	[T10]						
$\hline {\rm IKK_i \rightarrow IKK_{ii}, \ IKK_{ii} \rightarrow IKK_n}$	k_4	k_4	$2 \times 10^{-3} \text{ s}^{-1}$	[this study]						
$I\kappa B\alpha$ and A20 gene expression										
$ \begin{array}{c} (g^i_{\rm A20}=0) \rightarrow (g^i_{\rm A20}=1) \\ (g^i_{\rm I\kappa B\alpha}=0) \rightarrow (g^i_{\rm I\kappa B\alpha}=1) \end{array} \end{array} $	$q_1 \cdot NF\kappa B_n$	q_1	$10^{-7} \mathrm{s}^{-1}$	[this study]						
$\begin{array}{c} (g_{\mathrm{A20}}^{i}=0) \leftarrow (g_{\mathrm{A20}}^{i}=1) \\ (g_{\mathrm{I}\kappa\mathrm{B}\alpha}^{i}=0) \leftarrow (g_{\mathrm{I}\kappa\mathrm{B}\alpha}^{i}=1) \end{array}$	$q_2 \cdot I \kappa B \alpha_n$	q_2	$5 \times 10^{-7} \mathrm{s}^{-1}$	[this study]						
$\varnothing \to A20_{mRNA}$	$c_1 \cdot g^i_{ m A20}$	0	$0.2 \ {\rm s}^{-1}$	[this study]						
$\varnothing \to I\kappa B lpha_{mRNA}$	$c_1 \cdot g^i_{\mathrm{I\kappa B} lpha}$	$-c_1$								
$\varnothing \leftarrow A20_{mRNA}$	$c_{3\mathrm{a}}$	$c_{3\mathrm{a}}$	$1.5 \times 10^{-3} \mathrm{s}^{-1}$	[this study]						
$\varnothing \leftarrow \mathrm{I}\kappa\mathrm{B}lpha_\mathrm{mRNA}$	c_{3i}	c_{3i}	$7.5 \times 10^{-4} \mathrm{s}^{-1}$	[L07]						
$\varnothing \to A20$	$c_4 \cdot A20_{ m mRNA}$		$0.5 \ {\rm s}^{-1}$							
$\varnothing \to I\kappa B\alpha$	$c_4 \cdot I \kappa B \alpha_{\mathrm{mRNA}}$	$- c_4$		[L07]						
Protein interactions and lifetime										
$\hline \\ NF\kappa B_{c} + I\kappa B\alpha_{c} \rightarrow NF\kappa B_{c} \cdot I\kappa B\alpha_{c}$	a_1	a_1	$10^{-7} \text{ mlcl}^{-1} \text{ s}^{-1}$	[this study]						
$\mathrm{NF}\kappa\mathrm{B}_{\mathrm{n}}+\mathrm{I}\kappa\mathrm{B}\alpha_{\mathrm{n}}\rightarrow\mathrm{NF}\kappa\mathrm{B}_{\mathrm{n}}{\boldsymbol{\cdot}}\mathrm{I}\kappa\mathrm{B}\alpha_{\mathrm{n}}$	$a_1 \cdot k_{\mathrm{v}}$	$k_{ m v}$	5	[L07]						
$I\kappa Blpha_{c} ightarrow I\kappa Blpha_{c,p}$	$a_2 \cdot IKK_a$	a_2	$10^{-7} \mathrm{s}^{-1}$	[L07]						
$\overline{\mathrm{NF}\kappa\mathrm{B}_{\mathrm{c}}\boldsymbol{\cdot}\mathrm{I}\kappa\mathrm{B}\alpha_{\mathrm{c}}\to\mathrm{NF}\kappa\mathrm{B}_{\mathrm{c}}\boldsymbol{\cdot}\mathrm{I}\kappa\mathrm{B}\alpha_{\mathrm{c,p}}}$	$a_3 \cdot IKK_a$	a_3	$5 \times 10^{-7} \mathrm{s}^{-1}$	[L07]						
$A20 \rightarrow \varnothing$	c_5	c_5	$5 \times 10^{-4} \text{ s}^{-1}$	[L07]						
$\begin{split} & I\kappa B\alpha_{c,p} \to \varnothing \\ NF\kappa B_c \boldsymbol{\cdot} I\kappa B\alpha_{c,p} \to NF\kappa B_c \end{split}$	$t_{ m p}$	$t_{ m p}$	$10^{-2} \mathrm{s}^{-1}$	[L07]						
$I\kappa Blpha_{c} ightarrow arnothing$	$c_{5\mathrm{a}}$	$c_{5\mathrm{a}}$	$3 \times 10^{-4} \text{ s}^{-1}$	[this study]						
$\overline{\mathrm{NF}\kappa\mathrm{B}_{\mathrm{c}}\text{\cdot}\mathrm{I}\kappa\mathrm{B}\alpha_{\mathrm{c}}} \to \mathrm{NF}\kappa\mathrm{B}_{\mathrm{c}}$	$c_{6\mathrm{a}}$	c_{6a}	$2 \times 10^{-5} \mathrm{s}^{-1}$	[L07]						
Karyopherins and transport										
$\rm I\kappa B\alpha_c \to I\kappa B\alpha_n$	$i_{1\mathrm{a}}$	$i_{1\mathrm{a}}$	$7 \times 10^{-4} \text{ s}^{-1}$	[this study]						
$\overline{\rm NF\kappa B_c \to NF\kappa B_{c,i}}$	$b_{\mathbf{i}_{N}}$	$b_{\mathbf{i}_{\mathbf{N}}}$	$0.1 \ {\rm s}^{-1}$	[this study]						
$\frac{\overline{NF\kappa B_{n}\cdot I\kappa B\alpha_{n} \rightarrow NF\kappa B_{n}\cdot I\kappa B\alpha_{n,e}}}{I\kappa B\alpha_{n} \rightarrow I\kappa B\alpha_{n,e}}$	$b_{\mathbf{e}_{\mathrm{I}}}$	$b_{\mathbf{e}_{\mathrm{I}}}$	$5 \times 10^{-3} \mathrm{s}^{-1}$	[this study]						
$NF\kappa B_{c,i} \rightarrow NF\kappa B_n$	$i_{\mathbf{i_N}}$	$i_{\mathbf{i}_{\mathbf{N}}}$	$10^{-2} \mathrm{s}^{-1}$	[this study]						
$\overline{\mathrm{NF}} \overline{\mathrm{\kappa}} \overline{\mathrm{B}}_{\mathrm{n}} \boldsymbol{\cdot} \mathrm{I} \overline{\mathrm{\kappa}} \overline{\mathrm{B}} \alpha_{\mathrm{n},\mathbf{e}} \to \mathrm{NF} \overline{\mathrm{\kappa}} \overline{\mathrm{B}}_{\mathrm{c}} \boldsymbol{\cdot} \mathrm{I} \overline{\mathrm{\kappa}} \overline{\mathrm{B}} \alpha_{\mathrm{c}}$	e k	$e_{\mathbf{e}_{\mathrm{I}}}$	$10^{-2} \mathrm{s}^{-1}$	[this study]						
$\mathrm{I}\kappa\mathrm{B}\alpha_{n,\mathbf{e}}\to\mathrm{I}\kappa\mathrm{B}\alpha_{c}$	$c_{\mathbf{e}_{\mathrm{I}}} \cdot \kappa_{\mathrm{V}}$	$k_{\mathbf{v}}$	5	[L07]						

Table C. List of reactions

(*) TNF_{cell} – number of TNF trimers/cell at 1 ng/ml TNF stimulation at the cell density of 2×10^5 /ml.

2 Methods and protocols of numerical simulations

Deterministic model

The model, provided in Additional file 2, is specified in BIONETGEN language, which is intended for defining regulatory networks of high combinatorial complexity [F09]. BIONETGEN software is capable of performing both deterministic and stochastic simulations of model dynamics. BIONETGEN allows for rule-based specification of the model; the rules are used to build a system of ODEs which are solved by an integrated CVODE solver.

Stochastic simulations

The stochastic simulations were performed using the Gillespie direct Stochastic Simulation Algorithm [G77] as implemented in BIONETGEN. The simulator allows for expressing reaction rates through functions of the system state, i.e., current number of molecules of given species. This allows for defining propensities not necessarily following the mass action kinetics. At every time step between consecutive reaction events, reaction propensities calculated using such functions remain constant.

To ensure random initial conditions at time t = 0, each stochastic simulation was started at time t drawn at random uniformly from the interval [-110 hr, -100 hr]. The population average was obtained from 300 simulations.

Supplementary references

- [T10] Tay S, Hughey J, Lee T, Lipniacki T, Covert M, Quake M (2010) Single-cell NF-κB dynamics reveal digital activation and analogue information processing. *Nature* **466**:267–271.
- [L07] Lipniacki T, Puszynski T, Paszek P, Brasier AR, Kimmel M (2007) Single TNFα trimers mediating NF-κB activation: Stochastic robustness of NF-κB signaling. BMC Bioinformatics 8:376.
- [F03] Faeder JR, Blinov ML, Hlavacek WS (2009) Rule-based modeling of biochemical systems with BioNetGen. Methods Mol. Biol. 500:113–167.
- [G77] Gillespie DT (1977) Exact stochastic simulations of coupled chemical reactions. J. Phys. Chem. 81:2340–2361.