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Abstract. Living cells may be considered as biochemical reactors of multiple steady

states. Transitions between these states are enabled by noise, or, in spatially

extended systems, may occur due to the traveling wave propagation. We analyze

a one-dimensional bistable stochastic birth-death process by means of potential and

temperature fields. The potential is defined by the deterministic limit of the process,

while the temperature field is governed by noise. The stable steady state in which

the potential has its global minimum defines the global deterministic attractor. For

the stochastic system, in the low noise limit, the stationary probability distribution

becomes unimodal, concentrated in one of two stable steady states, defined in this study

as the global stochastic attractor. Interestingly, these two attractors may be located

in different steady states. This observation suggests that the asymptotic behavior of

spatially-extended stochastic systems depends on the substrate diffusivity and size of

the reactor. We confirmed this hypothesis within kinetic Monte Carlo simulations of

a bistable reaction-diffusion model on the hexagonal lattice. In particular, we found

that although the kinase-phosphatase system remains inactive in a small domain, the

activatory traveling wave may propagate when a larger domain is considered.
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1. Introduction

Bistability and stochasticity are the key concepts in molecular biology. Bistable

regulatory elements are capable of introducing heterogeneity in cell population and may

allow cells in a multicellular organism to specialize and specify their fates [1, 2, 3, 4, 5].

Decisions between cell death, survival, proliferation or senescence are associated with

bistability [6, 7, 8]. Ogasawara and Kawato showed that a bistable system of brain-

specific protein kinase Mζ can play role in the long-term storage of memory [9].

Transitions between stable steady states occur due to the stochastic switching [10, 11],

or, in spatially extended systems, may follow the traveling wave propagation [12].

When the magnitude of noise is relatively large, the stochastic transitions between

attracting states are relatively frequent and the stationary probability distribution

(SPD) associated with the stochastic process has a characteristic bimodal shape.

The maxima of the SPD are approximately determined by the macroscopic steady

states (although they do not necessarily exactly overlap). Song et al proposed a

stochastic bifurcation concept describing the appearance of a new mode in the SPD,

accompanying the appearance of a new stable steady state in the bifurcation diagram of

the deterministic approximation of the process [13]. As the magnitude of noise decreases,

communication between the two attractors ceases. Consequently, the characteristic

time in which the probability distribution (PD) converges to the SPD elongates.

Kinetics near each attractor can be modeled as Gaussian process [14], while jumping

between the attractors can be modeled using the two-lumped-state Markov chain with

transition propensities calculated from the full Markov process. The relative stability

of two or more steady states depends on the system volume [15]. However, since the

characteristic time spent in each attractor basin grows exponentially with the volume

of the system, when the volume diverges to infinity, the SPD becomes (generically)

unimodal, concentrated in the vicinity of the “most stable steady state” or the “global

stochastic attractor” (GSA) [16, 17]. In this limit, bistability is manifested by a rapid

transition from one unimodal SPD to the other unimodal SPD in response to the change

of the bifurcation parameter.

For spatially extended bistable systems, considered in the deterministic

approximation, the most stable steady state can be determined by the direction of

the traveling wave propagation. Intuitively, the traveling wave propagates in such

direction that the whole domain converges to the most stable steady state – which

will be referred to as a global deterministic attractor (GDA). Interestingly, for a given

system of reactions and parameters, the GDA and GSA may be different. This implies

that SPD of the stochastic but perfectly mixed system will concentrate in one steady

state, while the corresponding spatially extended deterministic system may converge to

the other steady state due to traveling wave propagation. In the case when GDA and

GSA do not collocalize, one could expect that for the corresponding bistable, stochastic

but spatially distributed system, the size of the compartment and substrate diffusivity

control the relative stability of steady states. We verify this hypothesis simulating a
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stochastic kinase–phosphatase reaction–diffusion model on a hexagonal lattice.

The paper is organized as follows. In Preliminaries, we consider a general one-

dimensional birth–death (B–D) Markov process, introduce the GDA (subsection 2.1)

and GSA (subsection 2.2), and show that these two attractors may not overlap.

In Results, we propose the thermodynamic interpretation using the concepts of

the potential and temperature fields associated with the B–D process (subsection

3.1). The concept of the temperature for B–D processes was introduced by Ross

and colleagues [16, 18, 19]. Later, Bialek [20] and Lu et al. [7] proposed that the

temperature field is not uniform, but proportional to the sum of birth and death rates.

We will introduce another temperature definition, which converges to that proposed by

Bialek [20] in steady states of the system.

Next, we consider two biological examples. First (subsection 3.2), we investigate

analytically a simplified one-dimensional B–D process of kinase auto-activation in an

open compartment. We will demonstrate that the temperature field and thus the

stationary probability distribution is controlled by fluxes of the active kinase to and out

of the compartment, even in the case when these fluxes are equal and do not influence

the deterministic mass rate equation. In a relatively broad range of parameters the value

of in- and out-flux (which can be associated with substrate diffusivity) determines the

global attractor of the system. This observation suggests that for stochastic spatially

distributed systems the size of the compartment and substrate diffusivity control the

relative stability of steady states.

We verify this hypothesis in subsection 3.3 introducing a more realistic kinase–

phosphatase model with diffusion on a hexagonal lattice. In this latter model, by

performing kinetic Monte Carlo (KMC) simulations, we demonstrate that, despite the

fact that the kinase molecules in a small isolated compartment remain mostly inactive, in

a larger compartment the activatory traveling wave may propagate leading to persistent

activation of the system.

In Conclusions we review the main results in the biological context. The manuscript

is supplemented by three Appendices. In Appendix A.1 we review and discuss the

Bialek’s derivation of temperature. In Appendix A.2 we demonstrate that when the

temperature profile is nonuniform (i.e. in the generic case), an arbitrary steady state

may become the GSA, provided that the temperature in the vicinity of this state is

sufficiently low. In Appendix A.3 we show that the parameter range for which the

bimodal SPD distribution is observed decreases to zero as the system volume diverges

to the infinity.

2. Preliminaries

2.1. Global deterministic attractor

We will consider a one-dimensional B–D process:

K → K + 1 : V λ
(
K
V

)
; K → K − 1 : V µ

(
K
V

)
, (1)
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where K is the number of substrate molecules, V is the volume of the reactor and λ
(
K
V

)
and µ

(
K
V

)
denote birth and death intensities, nonnegative for K > 0, with µ(0) = 0.

The assumption that birth and death intensities depend on the concentration x = K
V

,

rather than on the number of molecules K, allows for comparing reactors of different

volumes. In the deterministic limit, when the volume of the reactor tends to infinity,

the B–D process follows the law of mass action,

dx

dt
= λ(x)− µ(x) =.. W (x) =.. −dU(x)

dx
. (2)

Function U(x) can be interpreted as a potential. The stable stationary states of (2)

are in the minima of U(x). We assume that the potential has two minima in x1 and x3,

separated by a maximum in x2. The trajectories of (2) converge to x1 or x3 depending

on the initial state of the system. Equations (1–2) may satisfactorily describe the state

of the reactor in the infinite diffusion limit, in which the concentration x is constant

over the reactor. In the case of finite diffusion, (2) should be replaced by the reaction–

diffusion equation for the substrate density x(z, t) (here for illustration purposes we

assume that x depends on one spatial coordinate, z),

∂x

∂t
= D

∂2x

∂z2
− dU(x)

dx
, (3)

where D is the diffusion coefficient. The above equation yields the traveling wave

solutions, x = x(z − vt) = x(ζ) connecting steady states x1 and x3. For this solution

x(z)→ x1 for z → −∞ and x(z)→ x3 for z →∞. The propagation velocity v may be

given in the implicit form (see [21]) as

v =
U(x1)− U(x3)∫∞
−∞(dx

dζ
)2dζ

. (4)

The sign of velocity v, given by Sgn(U(x1)−U(x3)), assures that the region of “lower

energy” expands, i.e. x(z, t) → xU as t → ∞, where U(xU) is the global minimum.

Only in the non-generic case, when U(x1) − U(x3) = 0, the system has standing wave

solutions in which states “x1” and “x3” coexist. Intuitively, for a “random” initial

condition in the sufficiently large reactor, in some areas of reactor x(z) will be in the

basin of attraction of xU . In such a case the traveling wave or waves will be formed and

in the whole reactor the substrate density x(z, t) will converge to xU . Therefore, for the

deterministic, spatially extended system (3), the state xU , where the potential achieves

the global minimum, may be considered a global attractor. We will refer to it as a GDA

(global deterministic attractor).

2.2. Global stochastic attractor

Let p(K, t) denote the probability that the number of substrate molecules equals K at

time t in the process (1). Probability pK(t) obeys the evolution (or Master) equation

∂p(K, t)

∂t
= p(K − 1, t)V λ

(
K−1
V

)
+ p(K + 1, t)V µ

(
K+1
V

)
− V

(
λ
(
K
V

)
+ µ
(
K
V

))
p(K, t).(5)
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In the steady state p(K, t) = pK = const, the net probability flux between neighboring

states K and K + 1 equals zero, i.e.

pK λ
(
K
V

)
− pK+1 µ

(
K+1
V

)
= 0. (6)

Therefore, under the assumption that
∏∞

i=0

(
λ
(
i
V

)
/µ
(
i+1
V

))
<∞, pK satisfies

pK = p0

K−1∏
i=0

λ
(
i
V

)
µ
(
i+1
V

) , (7)

where p0 is such that
∑
pK = 1. From (7) we have

log pK = log p0 +
K−1∑
i=0

log
λ
(
i
V

)
µ
(
i+1
V

) . (8)

For large V the sum can be replaced by the integral, that leads to [16, 17, 22, 23]

pK ' p(x) = p0 exp(−V Φ(x)), (9)

where

Φ(x) ..= −
∫ x

0

log
λ(y)

µ(y)
dy. (10)

The local minima and maxima of Φ(x) correspond to stable and unstable macroscopic

steady states of (2), respectively. The Laplace method implies that for V → ∞, p(x)

converges to the Dirac delta, δ(xΦ), where Φ(xΦ) is the proper global minimum of Φ(x),

provided that such minimum exists [24]. Only in the non-generic case, when Φ(x) has

two or more equal minima, the stationary probability distribution (SPD) in the zero

noise limit (V →∞) is distributed between these minima. In this way we showed that,

generically, when V →∞, the SPD concentrates in the macroscopic steady state of the

mass rate equation, in which Φ(x) achieves the global minimum. The steady state xΦ,

in which Φ(x) achieves the global minimum, may be thus considered the GSA (global

stochastic attractor). The local maxima and minima of Φ(x) correspond to the maxima

and minima of U(x). However, the global minimum of Φ(x) may not correspond to the

global minimum of U(x), therefore the GSA may not be collocalized with the GDA.

According to our knowledge this observation was first explicitly made in the context of

the Schlögl model [25] by Nicolis [23].

Later, in the context of stochastic gene expression, it was observed that the

character of noise, defined by the adiabaticity parameter [26, 27] or coarse graining

[28] influences the SPD. Recently, for a gene expression model with the additive or

multiplicative noise Frigola et al showed that the SPD is concentrated in the global

minimum of the stochastic rather than the deterministic potential [29]. Frigola et

al defined the stochastic potential based on the Fokker–Planck approximation and

demonstrated that type of noise dictates in which of steady states such potential has

the global minimum.
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3. Results

3.1. Thermodynamic interpretation

In order to provide the thermodynamic interpretation of the above observation, we

consider the problem of particles diffusing in the potential and temperature fields U(x)

and T (x). Such particles drift with flow JF = −Mρ(x, t)(dU/dx) where M is the

mobility and ρ(x, t) is the local concentration of particles. In thermal equilibrium,

the drift flow is balanced by the diffusion flow JD = − ∂
∂x

[Γ(x)ρ(x, t)], where Γ(x) =

MkBT (x) is the diffusion and kB is the Boltzman constant. In the steady state

JD + JF = 0, and one obtains

ρ
dU

dx
= −kB

d

dx
[ρ(x)T (x)], ρ(x) = ρ0

T0

T (x)
exp

[
−
∫

dU/dx

kBT (x)
dx

]
. (11)

In the uniform temperature field T (x) = T0, the last expression simplifies to ρ(x) =

ρ0 exp [−U(x)/kBT0]. In such a case, ρ(x) converges to δ(xU) as T0 → 0. However, the

above is not true when the temperature field T = τ0T (x) is not uniform. In case when

τ0 → 0, ρ(x) converges to δ(xΦ), where xΦ is point of the global minimum of
∫ dU(x)/dx

kBT (x)
dx

which may be different than xU . When temperature gradients are not very large, the

prefactor T0/T (x) can be replaced by a constant which leads to

ρ(x) = ρ0 exp

[
−
∫

dU/dx

kBT (x)
dx

]
. (12)

This approximation is equivalent to neglecting the component of diffusion flow JD
called spurious flow Jspurious = −ρ(x, t)dΓ(x)/dx = −kBρ(x, t)MdT (x)/dx; i.e. flow of

particles induced by the diffusion or temperature gradient, known also as Soret effect,

see [30] and [31]. By comparing p(x) given by (9) and (10) with the particle density

ρ(x) given by (12), we obtain T (x) as

T (x) =
1

kBV

λ(x)− µ(x)

log (λ(x)/µ(x))
. (13)

That is, in the low-noise limit (large V ) the SPD of the B–D process is proportional

to the density of particles diffusing in the potential U(x) =
∫

(µ(x) − λ(x))dx and the

temperature field T (x) given by (13). Let us notice that T (x) defined by (13) vanishes

when either λ(x) or µ(x) are zero. Points in which T (x) = 0 are singular, i.e. they can

be passed only in one direction. If such points exist, they bound the absorbing regions.

Another, methodologically rigorous, way of deriving temperature, based on the

Fokker–Planck approximation, was proposed by Bialek [20] and then followed by Lu et

al [7]. It led to T̃ (x) = (λ(x)+µ(x))/(2kBV ). We discuss Bialek’s approach in Appendix

A.1; see also [32] for a recent detailed review. Finally, we mention the recent study by

Feng and Wang [33] who introduced the other concept of the effective temperature for

gene networks basing on the correlation and the response functions. This is an entirely

different approach, leading for example to negative temperatures for a self-repressing

gene.



Predicting spatial stochastic dynamics 7

As shown in the Appendix A.2, any of the U(x) minima may become a global

attractor depending on the temperature profile T (x). This implies that two stochastic

processes converging to the same mass rate equation in the V → ∞ limit may have

two different GSAs. In the following section, we illustrate this unintuitive observation

and its consequences using a simple bistable kinase auto-activation model, a version

of the Schlögl model [25], classified as one of the simplest bistable systems [34]. The

auto-activation is characteristic for Src, Syk, and Tec family kinases important in the

immune cell signaling [35, 36].

3.2. Simplified kinase auto-activation model

In the model we will assume that the total concentration of kinase molecules remains

constant and equals 1, thus their number is equal to the volume of the compartment

V . Kinases can be in either active or inactive state, and the number of active kinases

will be denoted by K (see figure 1). Inactive kinases, number of which is V −K, can

be activated by active kinases with rate proportional to the square of the active kinase

concentration x = K/V , or by other kinase species with some small constant rate c1.

The second order nonlinearity arises either when the active unit of the kinase is a dimer

or when double phosphorylation is required to activate the kinase [37, 38]. In turn, active

kinases are inactivated with constant rate d1. Under above assumptions the number of

active kinases K follows the B–D process with rates:

K → K + 1 :
(
c1 + c2

(
K
V

)2
) (

1−
(
K
V

))
V ; K → K − 1 : d1

(
K
V

)
V. (14)

Let us notice that since the total number of kinases remains constant, the number of

active kinases is limited by V , which is reflected by the fact that the birth intensity is

zero for K = V .

Next, we will assume that active kinases can translocate to and out of the

compartment, with fluxes f1 and f2, respectively. Such situation arises when the

considered compartment is a subvolume of a larger reactor. As a consequence, we

obtain the following birth and death intensities, where concentration x = K/V is used

instead of the number of molecules K,

λ(x) = (c1 + c2x
2)(1− x) + f1; µ(x) = d1x+ f2. (15)

For the sake of simplicity and illustration purposes we will assume that the in-flux

and out-flux are equal, f1 = f2 = f . Such simplifying assumption assures that the

(deterministic) mass rate equation for x,

dx

dt
= λ(x)− µ(x) = (c1 + c2x

2)(1− x)− d1x =.. W (x) (16)

does not depend on f . We will see, however, that f controls the SPD and determines

the most stable stochastic attractor. We focus on the bistable case when W (x) has 3

real roots 0 < x1 < x2 < x3 < 1. In the further analysis we will use the roots x1, x2, x3
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as parameters describing polynomial W (x). The original coefficients c1, c2, d1 may be

recovered from the roots using Vieta’s formulas by the following relations:

c1 =
d1x1x2x3

(x1 + x2)(x1 − 1)(x2 − 1)
, c2 =

d1

(x1 + x2)(x1 − 1)(x2 − 1)
. (17)

Let us notice that since c1 and c2 are proportional to d1, the last coefficient determines

only the time scale of the process, τ = 1/d1. Since the quotient of coefficients at the third

and at the second order term in W (x) equals −1, roots of W (x) satisfy x1 +x2 +x3 = 1,

and thus the parameter space may be reduced to the two-dimensional domain ∆, defined

as follows:

∆ =

{
(x1, x2) ∈ R2

∣∣∣ x1 > 0, x2 > 0, x1 < x2, x2 <
1

2
− x1

2

}
(18)

(see figure 2). Domain ∆ splits into two subdomains, ∆1 and ∆3, such that for

(x1, x2) ∈ ∆1, the SPD of the process (14-15) in the V → ∞ limit converges to δ(x1)

and for (x1, x2) ∈ ∆3, the SPD converges to δ(x3). The curves separating ∆1 and ∆3

depend on f , x1(x2; f). They are showed for f = 0, f = 0.1, f = 1 and f = ∞ in

figure 2, and are given analytically based on (10) in the implicit form by

Φ(x3)− Φ(x1) = −
∫ x3

x1

log
λ(y)

µ(y)
dy = 0. (19)

In the case with zero flux, f = 0, the temperature profile is not uniform and for the

symmetric potential U(x), the SPD is not symmetric, but is concentrated in the colder

attraction basin of point x1 (figure 3, left column). The temperature effect may be

balanced by the asymmetry of the potential (figure 3, right column). For the point

B = (x1, x2(x1)) on the separatrix f = 0, in the V → ∞ limit SPD p(x) converges to

αδ(x1) + βδ(x3). However, this cannot be explicitly numerically demonstrated, because

even a tiny deviation from the separatrix causes the SPD to be redistributed either to x1

or x3 as V →∞ (figure 3, right column, two bottom panels). As shown in the Appendix

A.3, in figure 9, the bimodal SPD expected for bistable systems may be observed only

if the magnitude of noise is sufficiently large. Interestingly, as shown in the lowest panel

of figure 3, SPD for large temperatures concentrates mostly in the x1 basin, and then

in the T → 0 limit it converges to δ(x3). This confirms the observation made by Vellela

and Qian that the relative stability of steady states depends on the system volume [15].

When the system communicates with environment, i.e. when f > 0, the

temperature profile T (x) is modified; figure 4. For f = 0 (figure 4, left column) the

temperature is much lower in the left attraction basin and thus the SPD concentrates

in this basin. For f = 1 (figure 4, right column), the temperature profile is flatter and

the SPD concentrates in the global potential minimum x3 as V →∞. For f →∞, the

temperature profile T (x) becomes uniform, and SPD converges to δ(xU) as V → ∞,

where xU is the steady state in which potential U(x) has the global minimum. It

should be noted that for larger f , larger V is required to reach the unimodal SPD,

figure 4. In the f → ∞ limit, Φ(x) becomes proportional to U(x) and SPD f(x)

becomes symmetric for the symmetric potential U(x), i.e. when U(x1) = U(x3), which

implies x2 = (x1 + x3)/2 = 1/3.
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At this point, let us recall the reaction–diffusion system (3). As follows from (4),

for U(x1) = U(x3) the traveling wave velocity is v = 0. In our specific example, (3)

takes the form of the Nagumo equation [21],

∂x

∂t
= D

∂2x

∂z2
+ (x1 − x)(x2 − x)(x3 − x), (20)

which yields the traveling wave solutions

x(z − vt) = x(ζ) =
x3 + x1 exp

[
(2D)−1/2 (x3 − x1)ζ

]
1 + exp

[
(2D)−1/2 (x3 − x1)ζ

] (21)

with

v = (x1 − 2x2 + x3)

√
D

2
. (22)

The last result implies that in the f →∞ limit the stochastic process is diffusion–driven

and the associated temperature field becomes uniform. As f increases the parameter

range for which GSA and GDA are localized in different steady states decreases and

only for the f →∞ limit the two attractors must collocalize.

In summary, we found that there is a broad range of parameters (figure 2, between

separatrices for f = 0 and f = ∞) in which GDA corresponds to the active state x3,

while GSA corresponds to the inactive state x1. This is, there exists a broad parameter

range in which:

• the discrete, perfectly mixed stochastic system, considered in the isolated reactor,

will converge to the inactive state,

• while in its spatially extended deterministic counterpart the activatory traveling

waves will propagate, leading to the activation of the system.

This suggests that in stochastic spatially distributed systems the global attractor is

determined by the diffusion and size of the reactor. In the next section we will confirm

this hypothesis considering a more realistic reaction–diffusion model on a hexagonal

lattice.

Remark: The SPD may inadequately represent the behavior of bistable systems in the

low noise limit. As noise decreases, the communication between steady states ceases, and

the characteristic state-to-state transition time lengthens, and thus time in which the

PD approaches the SPD may become longer than time in which external conditions

defining potential may be considered constant. In the low noise limit the bistable

system has two distinct time scales: the intermediate (in which the initially uniform

PD becomes bimodal) and the asymptotic time scale in which the PD converges to the

unimodal SPD (figure 5). At intermediate time scale the system behavior is close to

deterministic. Depending on the nature of the biochemical process, each of the two time

scales and associated “limiting”PDs can be important.
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3.3. Kinase auto-activation reaction–diffusion model on a 2D hexagonal lattice

In the model we consider two molecular species, kinase K and phosphatase P . We

assume that the kinase molecules can be in one of three states, unphosphorylated

K, singly phosphorylated Kp and doubly phosphorylated Kpp. Kinases may activate

one another, and in turn are dephosphorylated by phosphatases with intensity d. The

phosphorylation intensities c1, c2 and c3, of, respectively, K, Kp, and Kpp, increase with

the kinase phosphorylation level. The following reactions are considered:

Phosphorylation by an unphosphorylated kinase:

K +K → K +Kp : 2c1, (23a)

K +Kp → K +Kpp : c1. (23b)

Phosphorylation by a singly phosphorylated kinase:

Kp +K → Kp +Kp : 2c2, (24a)

Kp +Kp → Kp +Kpp : c2. (24b)

Phosphorylation by a doubly phosphorylated kinase:

Kpp +K → Kpp +Kp : 2c3, (25a)

Kpp +Kp → Kpp +Kpp : c3. (25b)

Dephosphorylations:

P +Kp → P +K : d1, (26a)

P +Kpp → P +Kp : 2d1. (26b)

By convention, the first molecule on both reaction sides is considered the enzyme, while

the second represents the substrate. The factor 2 multiplying rates of reactions involving

K and Kpp as a substrate reflects the fact that an unphosphorylated kinase can be

phosphorylated at any of its two residues, and similarly the doubly phosphorylated

kinase can be dephosphorylated at any of its two residues.

The deterministic approximation of the system leads to three partial differential

equations for concentrations of K, Kp and Kpp. We confine to the case in which the

diffusion coefficient D is equal for all kinase forms regardless of their phosphorylation

level. In such a case we may assume that the total surface concentration of kinase CK
remains constant and uniform over the surface. The phosphatase surface concentration

will be denoted by CP . The fractional concentrations of K, Kp and Kpp will be denoted

by k, kp and kpp, thus by definition k + kp + kpp = 1.

∂k

∂t
= D

∂2k

∂z2
+ d1CPkp − 2(c1k + c2kp + c3kpp)kCK, (27a)

∂kp

∂t
= D

∂2kp

∂z2
+ 2(c1k + c2kp + c3kpp)kCK + 2d1CPkpp

− (c1k + c2kp + c3kpp)kpCK − d1CPkp, (27b)

∂kpp

∂t
= D

∂2kpp

∂z2
+ (c1k + c2kp + c3kpp)kpCK − 2d1CPkpp. (27c)
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Here for the sake of simplicity we assume the dependence on only one spatial coordinate

z. The above system exhibits bistability in a broad range of parameters. Let us notice,

that in the deterministic approximation the system dynamics depends on only four

parameters, values of which will be set constant for the rest of this considerations,

C1 = c1CK = 0.02; C2 = c2CK = 0.15; C3 = c3CK = 4; D1 = d1CP = 1. (28)

The values of parameters are chosen so that the system (27a–27c) has three steady state

solutions, two stable (active with low level of unphosphorylated kinase, k = 0.15, and

inactive with high level of unphosphorylated kinase, k = 0.94) and one unstable:

• inactive: (k = 0.94, kp = 0.06, kpp = 0.00),

• unstable: (k = 0.50, kp = 0.41, kpp = 0.08),

• active: (k = 0.15, kp = 0.48, kpp = 0.37).

For these parameters we found that:

(i) The SPD obtained in Gillespie algorithm simulations for the stochastic perfectly

mixed system defined by reactions (23a-26b) concentrates in the decreasing vicinity

of the inactive state as the number of kinases grows, figure 6(a–c). Values

of parameters employed for Gillespie algorithm simulations are c1 = C1/NK,

c2 = C2/NK, c3 = C3/NK, d1 = D1/NP , where NK and NP are the numbers

of kinase and phosphatase molecules. That is, the reaction rates are scaled by the

number of molecules, which is equivalent to the assumption that the concentrations

are independent of the number of substrate molecules. In spatially homogeneous

systems the kinases dephosphorylation rate D1 is a product of phosphatase activity

and the number of phosphatases D1 = CPd1 = 1. In reactions (23a-26b) the number

of phosphatases remains unchanged, and is unimportant for the system dynamics.

(ii) The system (27a-27c) with parameters C1, C2, C3, D1 (28) describes an activatory

traveling wave solution i.e. waves that propagate from the active to inactive state,

figure 6(d).

The above finding implies that for the system defined by reactions (23a-26b) and

parameters (28) the stochastic and deterministic global attractors diverge, and are

defined, respectively, by the inactive and active states. Therefore, although a potential

may not be defined for the system (27a-27c), the system exhibits an analogous behavior

as the simpler system (16) analyzed in the previous section.

Finally, to confirm the hypothesis stated in the previous section, we performed

KMC simulations on hexagonal lattices, 20 × 20 (with periodic boundary conditions,

i.e. toroidal topology) and 20× 1000 (with periodic-reflecting boundary conditions, i.e.

cylindrical topology). In these two simulations we assumed that fraction of lattice sites

χK = 0.4 is occupied by kinases, while fraction of lattice sites χP = 0.1 is occupied by

phosphatases. In KMC simulations molecules can interact only when in contact. All

molecules move with the same motility M = 5000, that is, the propensity that a given

molecule jumps to a neighboring empty site is M/6. The relation between diffusion
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and motility on 2D lattice is D = (1 − χK − χP)s2M/4, where (1 − χK − χP) is the

fraction of empty sites on the lattice, and s is the distance between the centers of

adjacent hexagonal cells. Thus, in units in which s = 1, we obtain for χK = 0.4 and

χP = 0.1, D = M/8. For KMC simulations we set ĉ1 = C1/nK, ĉ2 = C2/nK, ĉ3 = C3/nK,

d̂1 = D1/nP , where nK = 6χK (and nP = 6χP) are expected values of the number of

kinase (and phosphatase) molecules that are in the immediate vicinity of any molecule.

The use of coefficients c1 = C1/NK, c2 = C2/NK, c3 = C3/NK, d1 = D1/NP in Gillespie

simulations, and coefficients ĉ1 = C1/nK, ĉ2 = C2/nK, ĉ3 = C3/nK, d̂1 = D1/nP in KMC

simulations, provides that these two approaches converge in the infinite diffusion limit

[39].

In simulations performed on a small toroidal lattice, 20× 20, we found, as already

expected from Gillespie algorithm simulations shown in figure 6(b), that the system

remains in the inactive state for most of the time (figure 7). In these two simulations

(shown in figure 6(b) and figure 7) the number of kinase molecules was the same (equal

160). The assumed large motility M = 5000 implies that the relatively small reactor

20× 20 can be considered to be almost perfectly mixed, and thus the obtained SPD is

nearly identical to the one obtained in Gillespie algorithm simulations for 160 kinases,

figure 7(b). In both approaches more than 0.99 of mass is concentrated in the vicinity

of the inactive state.

In contrast to simulations on the small toroidal lattice, 20 × 20, in simulations

performed on the 20 × 1000 lattice we observed propagation of an activatory traveling

wave, followed by persistent activity of the system (figure 8). The system remains

persistently active because, even when any region is inactivated due to stochastic

fluctuations, it is quickly sealed by the activatory traveling wave. On the other hand,

the motility M = 5000 is about 3 orders of magnitude too small to render the 20×1000

reactor mixed.

The behavior observed in KMC simulations remains in agreement with the

expectations coming from the deterministic approximation of the system (figure 6).

Activation of the systems on the 20× 1000 lattice can be interpreted on the basis of the

analysis we made in the previous section. The 20×1000 lattice can be viewed as an array

of small 20×20 compartments. When these compartments are isolated, as in simulations

shown in figure 7, the in-flux and out-flux of active kinase f equals zero, and the system

remains in the vicinity of GSA – in this case the inactive state (figure 4). However,

when compartments are connected, the flux f makes the temperature profile flatter

and the systems converges to GDA, which corresponds to the active state (figure 4 and

figure 8). In summary, we demonstrated that the spatially-extended system converges

to GSA when diffusion is fast enough to make the reactor perfectly mixed, but when

the same system is considered in a larger reactor the traveling waves may form and can

drive the system to GDA.
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4. Conclusions

Bi- and multistable systems play a prominent role in signal processing. The attractors

of molecular dynamical systems control the cell evolution and fate. Transitions between

attractors can be due to stochastic switching, or may result from the traveling wave

propagation. The first mode is characteristic for perfectly mixed systems for which

noise provides the unique possibility of selection of the most stable steady state —

termed here the global stochastic attractor. The second transition mode dominates in

spatially–extended systems characterized by relatively slow diffusion. These systems

may achieve the global deterministic attractor due to the traveling wave propagation in

which the more stable steady state expands. Interestingly, as we discussed in this study,

in bistable systems these two attractors (i.e. GSA and GDA) can be different.

We studied analytically the one-dimensional birth–death process for which potential

and temperature fields may be constructed. In such a case, the GDA is defined by the

global minimum of the potential, while the GSA can be in any of the potential minima

for a particular temperature profile. As an example, we consider the bistable kinase

auto-activation model in the open compartment, such that the active kinase can flow in

and out of the compartment. Even in the case when the in-flux and out-flux are equal

and do not influence the deterministic mass rate equation and the related potential,

they control the temperature profile, and as a consequence – the GSA. When the in-flux

and out-flux increase (which can be interpreted as the increase of kinase diffusivity),

the temperature grows and its profile becomes uniform, and in the infinite flux limit

the GSA is determined by the global minimum of the potential, i.e. it collocates with

the GDA. This finding allows us for putting forward the hypothesis that in stochastic

spatially-extended biochemical reactors the relative stability of attractors is governed by

the substrate diffusivity and size of the compartment. When for a given diffusion, the

reactor is small enough to be considered as perfectly mixed, the system of interacting

molecules converges to the GSA. In a much larger reactor, in which traveling waves can

be formed, the same system converges to GDA.

We confirmed this hypothesis by performing KMC simulations for the kinase-

phosphatase system, in the parameter range in which the GSA is located in the inactive

steady state, while the GDA is located in the active steady state (figure 6). Accordingly,

we found that the kinase–phosphatase system simulated in a small toroidal compartment

remains mostly inactive state (figure 7), while the same system simulated in a long

cylindrical compartment is activated due to the traveling wave propagation and remains

active (figure 8).

In summary, we found that relative stability of attractors in bi- (or multi-) stable

systems is controlled by the diffusivity of substrates and size of the compartment. These

two parameters can be controlled and modified in cell evolution. Buffers, extracellular

ligands can control diffusivity of cytoplasmic or membrane proteins. The effective size

of the reactor can be modified by plasma membrane deformation, formation of lipids

rafts and other barriers. It is thus tempting to speculate that cells may employ these
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mechanism for their activation or inactivation. Such mode of activation may be relevant

in the immune cell signaling, which requires the aggregation of membrane receptors.

Appendix

Appendix A.1. Temperature derivation based on the Fokker–Planck approximation.

To derive temperature Bialek [20] used the Fokker–Planck (or diffusion) approximation

of the Master equation (5), see e.g. [30],

∂p(x, t)

∂t
=

∂

∂x

(
dU(x)

dx
p(x, t)

)
+

∂2

∂x2

(
λ(x) + µ(x)

2V
p(x, t)

)
. (A.1)

In the stationary case the above equation can be solved explicitly:

p(x) = p0
2V

λ(x) + µ(x)
exp

[
−
∫ x

0

dU(x′)

dx′
2V

λ(x′) + µ(x′)
dx′
]
. (A.2)

It is known, however, that the Fokker–Planck approximation obtained by truncating the

Kramers-Moyal expansion after the second term is not a satisfactory approximation for

bistable systems [40]. As a result, the SPD p(x) given by (A.2) differs from the “exact”

p(x) obtained directly from the stationary Master equation in the V → ∞ limit, (9)

and (10). In particular, equation (A.2) may lead to the incorrect determination of the

GSA. In equation (A.1) Γ(x) = kBT (x) = λ(x)+µ(x)
2V

is the diffusion coefficient. Thus the

effective temperature is (Bialek writes it simply as Teff = (λ(x) + µ(x))/2)

T̃ (x) =
λ(x) + µ(x)

2kBV
. (A.3)

Our and Bialek’s expressions for temperature converge in the limit |λ(x)−µ(x)|/(λ(x)+

µ(x)) → 0, i.e. in the steady states of (2). The main difference between Bialek’s and

our expression is that T (x) defined by (13) vanishes when either λ(x) or µ(x) are zero,

that is when the direction of motion is deterministic, while T̃ (x) vanishes when both

birth and death rates are zero, i.e. there is no motion at all. Points in which T (x) = 0

bound absorbing regions for the original Markov process, however these points state no

barrier when the process is considered in the diffusion approximation. This intuitively

explains the observation by Hänggi et al [40] that the Fokker–Planck approximation

overestimates transition rates between steady states. For that reason we prefer our

definition. Finally, let us recall that Ross et al and Chu et al [16, 19] considered

Φ(x) given in (10) as a “stochastic potential”, which leads to a constant temperature

equal 1/(kBV ). In a sense our approach is equivalent to that of Ross et al, i.e. our

temperature (13) combined with deterministic potential U(x) give the same SPD as

Ross’ temperature and stochastic potential Φ(x).

Appendix A.2. Each of the minima of the potential U(x) may become a global attractor

for a particular noise characteristics.

Two stochastic processes, characterized by B–D rates λ(x), µ(x) and λ∗(x) = λ(x) +

f(x), µ∗(x) = µ(x) + f(x) have the same deterministic mass rate equation, but are
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associated with different temperature fields and thus have different SPDs. In particular,

let us consider the case in which (2) has three steady states x1 < x2 < x3, such that

x1 and x3 are stable and x2 is unstable. This implies that W (x) = λ(x) − µ(x) < 0

on (x1, x2) and W (x) > 0 on (x2, x3). Without loss of generality we may assume that

for the process characterized by transitions λ(x) and µ(x) the function Φ(x) has the

global minimum in x1, and thus the SPD of this process converges to δ(x1). We will

demonstrate that there exists a function f(x) such that the SPD of the B–D process

with transitions λ(x) + f(x) and µ(x) + f(x) converges to δ(x3). Function f(x) must

thus satisfy

Φ∗(x3)− Φ∗(x1) = −
∫ x3

x1

log
λ(x) + f(x)

µ(x) + f(x)
dx < 0, (A.4)

which holds when∣∣∣∣∫ x2

x1

log
λ(x) + f(x)

µ(x) + f(x)
dx

∣∣∣∣ < ∫ x3

x2

log
λ(x) + f(x)

µ(x) + f(x)
dx. (A.5)

The last inequality holds when

(i) f(x) is sufficiently large on (x1, x2) and equals zero elsewhere, that is equivalent to

the increase of T (x) in the attraction basin of x1, or

(ii) f(x) is negative on (x2, x3) and equals zero elsewhere, and the new death rate

µ∗(x) < λ∗(x) is sufficiently small on (x2, x3). Such choice of f(x) is equivalent to

the decrease of T (x) in the basin of x3. In particular we can take f(x) such that

min µ∗(x) = 0 on (x2, x3). In such a case the system is no longer ergodic, and the

domain x > xmin (where µ∗(xmin) = 0) is absorbing.

We thus demonstrated that in the bistable B–D process, the SPD in the zero

noise limit (generically) converges to the Dirac delta in one of the two minima of the

corresponding potential U(x), but the choice of a particular minimum depends on the

temperature field T (x) of the process. The proof for a multistable system is analogous.

In the field of evolutionary games it has been shown similarly that the long-run behavior

of a population depends on its size and the mutation intensity [41].

Appendix A.3. The parameter range in which the bimodal SPD is observed decreases to

zero as the system volume diverges to infinity.

The bimodal probability distributions are typically associated with bistability. This is

true when the magnitude of noise is sufficiently large, i.e. when the volume of the system

is sufficiently small. However, when the system volume grows, the bimodal distribution

is replaced by the unimodal distribution concentrated around the most stable steady

state or the GSA. As shown in figure 9 the parameter range in which bimodal SPD p(x)

associated with the process (14) is observed decreases to zero as 1/V . By bimodal SPD

in this context we understand p(x) that satisfies

0.1 <

∫ x2

0

p(x) < 0.9. (A.6)
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Figure 1. Two bistable reaction systems of kinase auto-phosphorylation. (a) A simple

model with nonlinear auto-activation (circle-headed double arrow) defined by equations

(14). (b) A multistate kinase model with explicit phosphatase activity described

by equations (27a–27c). Phosphorylated kinases have higher catalytic activity (as

reflected by the width of circle-headed arrows).
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Figure 3. The case of zero flux, f = 0. Left column: (x1, x2) = A = (0.05, 1
3 )

(see figure 2). The potential field U(x) is symmetric with respect to the unstable

steady state x2. In this case, as the system volume V grows, the SPD concentrates

in the colder attraction basin of steady state x1 = 0.05. Right column: potential

U(x), temperature T (x) and function Φ(x) for (x1, x2) = B ≈ (0.05, 0.2818) on the

separatrix f = 0 shown in figure 2. The SPDs p(x) for B− = (0.05, 0.2818 − 0.001)

below the separatrix and B+ = (0.05, 0.2818 + 0.001) above the separatrix are shown

in two bottom panels. As V →∞, p(x;B−) converges to δ(x3) and p(x;B+) converges

to δ(x1).
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of attraction, and thus the SPD p(x) concentrates in x1 as V → ∞. Right column:

f = 1, (x1, x2) = C; the temperature profile is flatter than for f = 0 and the SPD

p(x) concentrates in the global potential minima at x3 = 0.67. The potential U(x) is

the same for both columns.
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Figure 6. Comparison of behavior of stochastic perfectly mixed systems with their

deterministic spatially-extended counterpart. (a), (b) and (c): SPDs estimated in

Gillespie algorithm (assuming spatial homogeneity of the system) simulations of the

stochastic system (23a-26b), containing 80, 160 or 320 interacting kinases, respectively.

SPDs concentrate in the decreasing vicinity of the inactive state (k = 0.94, kp =

0.06, kpp = 0.00) as the number of kinases grows. (d) Profile of the activatory

traveling wave, that propagates from the active to inactive state (the assumed diffusion

coefficient D = 625 corresponds to the motility M = 5000). The SPD in Gillespie

algorithm simulations was estimated from long trajectories containing more than 10

switches between the active and inactive state in case of 320 molecules, and much more

switches for 160 and 80 molecules.
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Figure 7. Kinetic Monte Carlo simulations of the system (23a-26b) on the hexagonal

lattice of size 20×20, for motility equal M = 5000. A fraction of lattice sites χK = 0.4

is occupied by kinase molecules, while phosphatase molecules occupy χP = 0.1 of

the lattice. (a) Fraction of unphosphorylated, singly phosphorylated and doubly

phosphorylated kinases in time. Insets: Snapshots of the system in its active (left)

and inactive (right) state. (b) SPDs obtained in Gillespie simulations (boxes) and

KMC (thick lines). In case of KMC simulations, the distribution was estimated from

multiple runs starting from the active and inactive state, and the mean first-passage

time analysis.
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Figure 8. Kinetic Monte Carlo simulations of the system (23a-26b) on the hexagonal

lattice of size 20× 1000, showing the activatory traveling wave propagation. The same

kinetic parameters, substrate fractions and motility M are assumed as in figure 7.

(a) Fraction of unphosphorylated, singly phosphorylated and doubly phosphorylated

kinases in time. (b), (c), (d), (e): four snapshots of the system in time points as marked

in (a).
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Figure 9. Width of the bistability zone σ in (x1, x2) plane as a function of V for three

values of x1. The width σ decreases as 1/V . For a given system volume V , σ decreases

as the distance between the two stable steady states x1 and x3 grows (i.e. when the

value of x1 decreases).
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