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Destabilization of a laminar flow in a rectangular channel

by transversely-oriented wall corrugation
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Linear stability of the flow through the transversely corrugated channel with
flat sidewalls is investigated numerically. Two variants of the wall corrugation are
considered: symmetric sinusoidal waviness of the top and bottom walls and one-
sided corrugation, i.e., one of the walls remains flat. Spectrally accurate Galerkin
method formulated in a transformed domain is used for the solution of the main
flow and linear stability equations. Unstable normal modes have been identified and
their parametric variation has been determined. The results show that for sufficiently
large aspect ratios, the influence of the sidewalls is weak and the stability proper-
ties resemble those of the spanwise-periodic channel (investigated recently by the
first author). It means that an appropriately designed transversal corrugation may
be regarded as a promising method for passive enhancement of mixing in laminar
regime.
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Notations

x, y, z spatial variables in the physical domain,
ξ, η spatial variables in the computational domain,
L dimensionless half-width of the channel (also, the aspect ratio of the chan-

nel section),
Re the Reynolds number,
Wref , Qref velocity and volumetric flow rate of the flow in the rectangular channel,
h(x) function describing the form of the wall corrugation,
Wm velocity profile of the main (undisturbed) flow,
Vm, Pm main flow velocity and pressure fields,
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u, v, w components of the velocity field of the flow disturbances,
p pressure field of the flow disturbances,
û, v̂, ŵ Fourier amplitudes of the velocity components of the normal mode,
p̂ Fourier amplitude of the pressure field of the normal mode,
β streamwise wave number of the normal mode,
σ = σR + σIi complex frequency of the normal mode,
Tk Chebyshev polynomial of the k-th order,
{bV

I , I = 1, . . . , N} the ensemble of the orthogonal basic functions used for the approximation
of Fourier amplitudes û, v̂, ŵ.

1. Introduction

The enhancement of transport capabilities of internal laminar flows is
of fundamental importance in numerous applications in heat transfer, biotech-
nology and microfluidics. These capabilities can be acquired only through in-
tense mixing which, in turn, necessitates existence of sufficiently complex, three-
dimensional and preferably time-dependent vortex structures. Such form of the
velocity field in the otherwise simple and usually unidirectional flow can be
brought about by various methods including geometric modifications (wall wavi-
ness, application of surface-mounted obstacles or vortex generators), external
forcing (pulsations or the pressure gradient, mounting of vibrating elements,
using wall transpiration, etc.) or the combination of both.

During the last four decades, different variants of such solutions have been
proposed and analyzed, both numerically and experimentally. Goldstein and
Sparrow [1] investigated the kinematic structures and mass transfer through
the divergent-convergent channel with symmetrically corrugated arc-shaped
walls. This research was motivated mostly by the need for improvement of
mixing efficiency in the flows through oxygenators. Later, numerical investiga-
tions of two-dimensional flow in a divergent-convergent symmetric channel with
sinusoidal walls were performed by Sobey [2] and verified experimentally by
Stephanoff et al. [3]. Systematic investigations of flows through channels with
sinusoidal walls have been carried out since the middle 80s in Japan, mostly
by Nishimura and his co-workers. Different variant have been considered includ-
ing stationary flows [4] as well as flows driven by oscillatory [5, 6] or pulsatile
pressure gradient [7, 8].

From the practical point of view, it is particularly interesting to consider
flows, which acquire complex structure through natural instability rather than
by external forcing. It has been demonstrated in a number of works [9–11] that
significant improvement of heat/mass transport in laminar regime may be ob-
tained only if boundaries of a flow domain are shaped properly to induce low-
Reynolds number instability and the excited normal modes are oscillatory, i.e.,
they have a form of travelling waves. In a divergent-convergent channel with
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sinusoidal and streamwise-oriented wall waviness, the oscillatory unstable mode
has been found for the Reynolds number exceeding 200 and more than three-
fold heat transfer enhancement has been demonstrated. Unfortunately, such
spectacular effect appears usually at the price of an excessive hydraulic resis-
tance, which can be even several times larger than in the reference “smooth”
flow.

The possibility of the low-Reynolds number destabilization of the channel
flows has been studied during last two decades by a number of authors. Major-
ity of this research focuses of the wall waviness which is two-dimensional and
streamwise-oriented, i.e., the lines of constant elevation of the wall are perpen-
dicular to the main flow direction. Such type of the wall corrugation is referred
in this paper to as the longitudinal one, see Fig. 1a. In particular, it has been
shown in [12] that, using a longitudinal wall corrugation with an appropriate
wavelength and sufficiently large amplitude, the critical Reynolds number ReL

can be reduced to the values as low as 100. The unstable normal mode is os-
cillatory, i.e., the disturbance has the form of a travelling wave meaning that

a)

b)

Fig. 1. Different orientations of wall corrugation with respect to the flow direction:
a) longitudinal, b) transversal.
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the disturbed flow is expected to be time-dependent. Other unstable mode, hav-
ing the form of the stationary wave, has been also identified. The stationary
disturbances are three-dimensional and, for lower corrugation amplitudes, their
critical Reynolds number is smaller than for the oscillatory mode. The effect
of instability of the travelling wave disturbances on the effectiveness of heat
transfer in the flow through a divergent-convergent channel was investigated
numerically by Blancher et al. in [13]. Recently, the same authors have car-
ried out numerical analysis of spatially developing nonlinear instabilities in such
a flow [14]. In other papers [15–17], the longitudinally oriented wall waviness has
been considered as the simplified model of unidirectional wall roughness. Con-
sequently, the amplitudes taken into account are rather small, yet some aspects
of the analysis, especially in the numerical approach (application of immersed
boundaries and domain transformation) are of some relevance also to the current
study.

Surprisingly enough, the number of works devoted to the stability of lam-
inar flows in transversely corrugated channels (see Fig. 1b) is rather limited.
Such type of geometrical modifications attracted some attention since late 80’s
due to their relation to the surface elements called the riblets. The main objec-
tive of this research was to explore the potential offered by the riblets in terms
of reduction of the skin-friction in the turbulent boundary layer (see [18] for
the comprehensive review). A few papers on the influence of the riblets on the
laminar-turbulent transition in the boundary layers have been also published
in mid 90’s, see the brief account of the main results in the seventh section of
the monograph [19]. In the context of the current study, the most important
reference is [20], where the numerical analysis of the channel flow instability
induced by a short-wave and high-amplitude, transversely oriented wall corruga-
tion (mimicking the presence of riblets) has been presented. It has been shown
that the critical Reynolds number of the most unstable normal mode can drop
under the value of 2600 (compared to ReL = 5772 of the smooth configuration,
i.e., plain Poiseuille flow).

The result obtained in [20] might suggest that the application of the trans-
verse wall corrugation is not a right way to obtain flow destabilization at really
low Reynolds numbers. However, one has to keep in mind that the aim of the
analysis in [20] was to assess influence of the ribbed surface on the stability of a
particular class of disturbances (the Orr-Sommerfeld modes) rather than looking
for opportunities of mixing enhancement. Thus, the true lesson learnt from [20]
is that the Orr-Sommerfeld modes are not the candidates for flow destabiliza-
tion at low Reynolds numbers and, perhaps, also the considered geometry of the
corrugation is probably not proper for this purpose.

The problem of low-Reynolds-number destabilization of the Poiseuille flow by
means of transversely-oriented wall waviness has been taken up by the author
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of the current study, and the most important findings were published in his
habilitation thesis [21] in 2007. Early calculations showed that Orr-Sommerfeld
modes respond rather weakly to the transverse wall waviness. This conclusion is
consistent with the findings of the earlier study [20]. However, further analysis
has revealed existence of a Squire mode which is particularly sensitive to the
transverse corrugation with rather large wavelength (3–5 times larger than the
average height of the channel’s section). Destabilization of this (otherwise stable)
mode is particularly strong when the corrugation is applied simultaneously to
both channel’s walls, with equal amplitudes and the opposite phase. On the other
hand, double-sided corrugation with zero phase-shift does not seem to have any
effect on flow stability at low and moderate Reynolds numbers. The explanation
of this fact can be formulated in terms of spanwise modulation of the main flow
velocity. The magnitude of this modulation is the function of the phase shift
between bottom and top wall’s corrugation. Sufficiently large amplitude of the
spanwise modulation (accompanied by appearance of inflection points in the
velocity profile) is necessary for flow destabilization. The maximal amplitude of
the modulation is attained when the wall corrugations are exactly in the opposite
phase. If the phase shift is zero, the situation is quite different: the modulation
basically disappears and the flow destabilization is absent.

It has been shown in the work [21] that the application of the opposite-
phase double-sided sinusoidal wall waviness with properly chosen wavelength
and the amplitude equal 10% of the average channel height, is able to reduce
the critical Reynolds number ReL to the value of 215. In continuation of this
investigation (see [22]), larger corrugation amplitudes have been considered and
further reduction to the spectacular value of ReL = 58 has been achieved at the
corrugation amplitude equal to about 20% of the average channel height. Since
any further attempts to increase the amplitude of the corrugation resulted in
some increase of ReL, thus one can safely assume that the value of 58 is very
close to the lowest value possible.

Another interesting finding of the investigations presented in [21] and [22] is
that the low-Reynolds-number flow destabilization is not accompanied by any
significant increase of the hydraulic resistance. Indeed, the value of the wave-
length of the most destabilizing transversal corrugation happens to coincide
almost exactly with the value of the wavelength for which the flow resistance
remains nearly unchanged, i.e. it is the same as for the “smooth” Poiseuille flow.
Another important property is that the critical Reynolds number ReL depends
mostly on the spectral (Fourier) structure of the corrugation shape. More specif-
ically, if two different shapes of the wall corrugation share the same Fourier
mode with a wavenumber from an appropriate range, then the corresponding
values of ReL will be very close irrespectively to other details of these shapes.
It means in particular, that the actual “depth” of the corrugation is irrelevant
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– the flow may remain stable in the presence of even large corrugation if the
Fourier spectrum of the wall shape does not contain a mode with a “dangerous”
wavenumber.

Yet another result of the research reported in [21] and [22] was the determi-
nation of the spatial structure of the unstable Squire mode. The velocity field of
this mode assumes the form of a vortex array, which is periodic in both stream-
wise and spanwise directions. Since the real part of the corresponding complex
frequency is nonzero, this pattern moves downstream as the travelling distur-
bance wave. Therefore one can expect that the flow resulting from a nonlinear
saturation process of small disturbances will exhibit oscillations which should sig-
nificantly improve its mixing capabilities. This expectation has been positively
verified by the direct numerical simulations using Fluent [23].

In aim of the current research is to investigate numerically linear stability
of the laminar flow in the channel of finite width, which is one step towards
more realistic configurations than those considered in earlier works [21] and [22].
More specifically, we assume that the bottom and top walls of the channel are
arbitrarily corrugated while the sidewalls are flat and parallel.

The analysis is of the temporal type and consists in determination of the least
stable (or most unstable) eigensolutions (normal modes) of the linear stability
equations. Once such modes are indentified, their variation with respect to the
geometric characteristics of the wall corrugation, the streamwise wavenumber,
and the Reynolds number is investigated. The ultimate goal of the analysis is
to assess the role of the channel sidewalls in the effect of low-Reynolds-number
instability. This time, the reference case is the flow through the channel with
rectangular section of the same aspect ratio. It is well known (see [24]) that the
critical Reynolds number ReL of the rectangular channel of a finite span is always
larger that its value for the plane Poiseuille flow. By analogy, a certain increase
of ReL is expected when the wall waviness is implemented for the channel with
sidewall rather than for the periodic channel of infinite width. The key issue
is: assuming that the aspect ratio of the channel section is large (but not too
large), is the value of ReL still small enough to make the transversely-oriented
wall corrugation a worth considering option?

This paper provides an extended account of the theory and numerical results
reported recently on the European Fluid Mechanics Conference EFMC-8 [25].
The contents of the paper can be summarized as follows. In the Sec. 2, the
mathematical formulation for the main (undisturbed) flow and for the evolution
of small disturbances has been provided. In the Sec. 3, the numerical approach
to the main flow and to the linear stability equations has been described. The
results of the parametric study of the unstable modes are presented in the Sec. 4.
Finally, the summary, conclusion and perspectives of further investigations are
presented shortly in the Sec. 5.
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2. Mathematical formulation

2.1. Flow in the rectangular channel

Consider first the flow in the rectangular channel, depicted in Fig. 2, which
will serve in this study as the reference case. The vertical distance between
bottom and top walls will be referred to as the channel height, while the distance
between the sidewalls is called the channel width or span. The dimensionless
coordinates are used such that the channel height is equal to 2 and the channel
width is equal to 2L. The ratio between the channel width and the channel
height, equal to L, will be called the channel aspect ratio.

Fig. 2. Channel with rectangular cross-section.

In the coordinate system chosen as shown in Fig. 2, the only nonzero com-
ponent of the velocity field is the z-component given by the following non-
dimensional formula:

(2.1) Wref(x, y) = 1 − y2 + 4

∞∑

k=1

(−1)k

α3
k

cosh(αkx)

cosh(αkL)
cos(αky), αk =

2k − 1

2
π.

The function Wref is the solution to the following boundary value problem

(2.2)
∆Wref ≡

∂2Wref

∂x2
+
∂2Wref

∂y2
= −2, (x, y) ∈ Ω,

Wref |∂ Ω = 0,

where Ω = {(x, y) : −L ≤ x ≤ L, −1 ≤ y ≤ 1}. In this study, the flow defined by
(2.1) is considered as a modification of the associated non-dimensional Poiseuille
flow

(2.3) WP (x, y) = 1 − y2.

The modification is caused by the presence of the side walls at x = −L and
x = L. Both the (2.1) and (2.3) flows are driven by the same non-dimensional
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pressure gradient; its dimensionless value is

(2.4) Gp = − 2

Re
.

In the formula (2.4), the symbol Re denotes the Reynolds number defined as
follows:

(2.5) Re =
wmax

P H

ν
,

where ν denotes the kinematic viscosity of a fluid and wmax
P denotes the maximal

value of the velocity of the Poiseuille flow between parallel walls separated by
the distance of 2H.

The non-dimensional volumetric flow rate corresponding to the velocity dis-
tribution (2.1) can be computed from the following formula:

Qref = Qref(L) =
8

3
L

[

1 − 6

L

∞∑

k=1

tanh(αkL)

α5
k

]

(2.6)

= QP

[

1 − 6

L

∞∑

k=1

tanh(αkL)

α5
k

]

.

In the above, the symbol QP = 8L/3 denotes the non-dimensional flow rate of
the associated Poiseuille flow (2.3) computed for the transversal segment having
the width of 2L, i.e., the same as the rectangular channel. Clearly, Qref < QP

because the fluid velocity near the sidewalls of the rectangular channel decreases
to zero. The infinite series term in the formula (2.6) can be interpreted as the
measure of increase in the flow resistance caused by the sidewalls.

2.2. Main flow

Consider now the flow in the channel with transversely corrugated walls. Two
types of wall corrugation are considered in this study:

1. Channel with symmetric corrugation of the bottom and top walls (see
Fig. 3a), i.e., described by the dimensionless formula

(2.7) yt(x) ≡ h(x) = −yb(x).

2. Channel with one-sided corrugation (see Fig. 3b), i.e., with the flat bottom
wall and wavy top wall (considered as the model of the experimental setup in
[23])

(2.8) yt(x) ≡ h(x), yb(x) ≡ 0.
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a)

b)

Fig. 3. Different variants of transversal wall corrugation: a) symmetric corrugation,
b) one-sided corrugation.

In both cases, the sidewalls are flat and the range of the x coordinate is
−L ≤ x ≤ L, i.e., the width of the channel remains equal to 2L. It is assumed
that the average value of the function h = h(x) is 1 in the symmetric corrugation
case or it is equal to 2 in the case of one–sided corrugation. Thus, irrespectively
of the corrugation variant, the average height of the channel is equal to 2 and
the area of the channel section is equal to 4L. The aspect ratio of the channel
section, which is defined as the ratio between the channel width and average
height, is equal to L.

The flow in the wavy channel is driven by the same steady pressure gradient
as the reference flow (2.1) in the rectangular channel. This flow is also unidirec-
tional, i.e., the only nonzero component of the velocity field is the z-component
Wm = Wm(x, y). The function Wm is the solution to the following boundary
value problem analogous to (2.2), namely

(2.9)
∆Wm ≡ ∂2Wm

∂x2
+
∂2Wm

∂y2
= −2, (x, y) ∈ Ω,

Wm|∂Ω = 0,

where this time the symbol Ω denotes the channel section (in the plane
z = const) and ∂Ω denotes the contour of Ω.
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2.3. Linear stability analysis

The stability analysis begins with the derivation of the equations which
govern the dynamics of small disturbances imposed on the main flow. The dis-
turbed velocity and pressure fields can be written as a sum of the main flow and
the time-dependent and three-dimensional disturbances

V(t, x, y, z) = Vm(x, y) + v(t, x, y, z)(2.10)

= [0, 0,Wm(x, y)] + [u, v,w](t, x, y, z),

P (t, x, y, z) = Pm(z) + p(t, x, y, z).

Next, the formulas (2.10) are plugged into the Navier-Stokes and continuity
equations. Since the disturbances are assumed to be small, the nonlinear terms
are removed and the following set of linear differential equations is obtained:

(2.11)

∂tu+Wm∂zu = −∂xp+
1

Re
(∂xx + ∂yy + ∂zz)u,

∂tv +Wm∂zv = −∂yp+
1

Re
(∂xx + ∂yy + ∂zz)v,

∂tw +Wm∂zw + u∂xWm + v∂yWm = −∂zp+
1

Re
(∂xx + ∂yy + ∂zz)w,

∂xu+ ∂yv + ∂zw = 0.

The velocity field (2.10) vanishes at ∂Ω, which implies the following boundary
conditions for the velocity field disturbances

(2.12) [u, v,w]|∂Ω = 0.

In general, the initial conditions must be also formulated

(2.13) [u, v,w]|t=0 = [u0, v0, w0].

Since the velocity Wm of the basic flow does not depend on variable z, the
Eqs. (2.11) admit particular solutions (normal modes) in the following form:

(2.14) [u, v,w, p](t, x, y, z) = [û, v̂, ŵ, p̂](x, y) exp[i(βz − σt)] + c.c.

In the above, the hat symbols refer to the complex amplitude functions and the
symbol “c.c.” stands for the complex conjugate terms. The quantity σ = σR +iσI

is the complex frequency of the normal mode. The symbol β denotes the spanwise
wave number of the flow disturbance, which is assumed to be z-periodic with
the period equal 2π/β. This assumption concerns also the pressure disturbances,
which implies that the average value of the streamwise pressure gradient of the



Destabilization of a laminar flow in a rectangular channel. . . 403

disturbed flow remains equal to the pressure gradient of the main (undisturbed)
flow.

After insertion of the normal mode formula (2.14) to the Eqs. (2.11), one
obtains

(2.15)

−iσû+ iβWmû = −∂xp̂+
1

Re
(∆ − β2)û,

−iσv̂ + iβWmv̂ = −∂yp̂+
1

Re
(∆ − β2)v̂,

−iσŵ + iβWmŵ + û∂xWm + v̂∂yWm = −iβp̂ +
1

Re
(∆ − β2)ŵ,

∂xû+ ∂yv̂ + iβŵ = 0.

From (2.12) one concludes that the amplitude functions of the velocity compo-
nents should satisfy the homogeneous boundary condition at the channel section
contour

(2.16) [û, v̂, ŵ]|∂Ω = 0.

The main goal of the linear stability analysis is to identify conditions in
which at least one unstable eigensolution of the boundary value problem (2.15)–
(2.16) exists. The normal mode is unstable if and only if the imaginary part
σI of its complex frequency σ is positive. In the context of flow destabilization,
it is particularly interesting to determine the critical Reynolds number ReL,
i.e., the maximal value of the Reynolds number such that all normal modes
are either attenuated (σI < 0) or – at most – neutrally stable (σI = 0).
It follows that for Re > Recrt there exists at least one normal mode which
grows exponentially in time. Since the magnitude of disturbances in the lin-
ear theory is arbitrarily small, the flow with Re > Recrt is unconditionally
unstable.

3. Numerical method

3.1. Domain transformation

In order to determine numerically the form of the main flow and analyze linear
stability characteristics, the transformation of the physical domain Ω to the
computational domain [−1, 1]2 is applied. The particular variant of this mapping
depends on the type of the corrugation:

1. Symmetric corrugation (see Fig. 4a).
In this case, the transformation from physical to computational domain is

defined as follows

(3.1)
ξ = x/L,

η = y/h(x) = y/[LH(x/L)],
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a) b)

Fig. 4. Mapping from physical domain to the computational domain: a) symmetric
corrugation, b) one-sided corrugation.

where

(3.2) H(ξ) = h(Lξ)/L.

The corresponding inverse mapping is given by the formula

(3.3)
x = Lξ,

y = ηh(Lξ) = LηH(ξ).

2. One-sided corrugation (see Fig. 4b).
In this case, the transformation from physical to computational domain is

defined as follows:

(3.4)
ξ = x/L,

η = 2y/h(x) − 1 = 2y/[LH(x/L)] − 1,

where the function H is defined by (3.2). The inverse mapping is defined by the
formula

(3.5)
x = Lξ,

y =
1

2
(η + 1)h(Lξ) =

1

2
(η + 1)LH(ξ).

3.2. Numerical method for the main flow

The boundary value problem (2.2) is transformed to the following form:

(3.6)
∆̃Wm(ξ, η) = −2, (ξ, η) ∈ [−1, 1]2,

Wm(ξ = ±1, η = ±1) = 0,
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where the main flow velocity Wm is expressed in the variables ξ and η, and the
symbol ∆̃ denotes the transformed Laplace operator defined as

(3.7) ∆̃ = L−2(∂ξξ − 2aξη∂ξη + aηη∂ηη + aη∂η).

The functional coefficients in the formula (3.7) can be expressed as follows

(3.8)
aξη = a(η) g1(ξ), aηη = γ2g2

2(ξ) + a2(η)g2
1(ξ),

aη = a(η) [2g2
1(ξ) − g3(ξ)],

where

g1(ξ) = H ′(ξ)/H(ξ), g2(ξ) = 1/H(ξ), g3(ξ) = H ′′(ξ)/H(ξ),(3.9)

a(η) =

{

η for symmetric corrugation,

η + 1 for one-sided corrugation;
(3.10)

γ =

{

1 for symmetric corrugation,

2 for one-sided corrugation.
(3.11)

The boundary value problem (3.6) can be solved numerically by means of the
spectral method. To this aim, the following polynomial functions are defined in
the computational domain [−1, 1]2:

(3.12) φi,j(ξ, η) = [Ti+2(ξ) − Ti(ξ)][Tj+2(η) − Tj(η)],

i = 0, . . . , Nξ, j = 0, . . . , Nη.

In the above formula, the general symbol Tk refers to the standard Chebyshev
polynomial of the order k. Note that the formula (3.12) implies that each function
φi,j vanishes identically at the boundary of the computation domain.

In the next step, the set of the functions (3.12) is re-numerated by a single
index I = I(i, j). Finally, the Gram–Schmidt orthogonalization is applied to
obtain the orthonormal system of the basic functions {bVI , I = 1, . . . , N}, where

N = (Nξ + 1) · (Nη + 1).

The property of orthogonality means that the following conditions hold

(3.13)

1∫

−1

1∫

−1

bVI (ξ, η)bVJ (ξ, η)ω(ξ, η) dξdη = δIJ ,
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where ω is the Chebyshev weight function

(3.14) ω = ω(ξ, η) =
[√

(1 − ξ2)(1 − η2)
]−1

.

Clearly, all basic functions {bVI , I = 1, . . . , N} satisfy the homogeneous boundary
condition

(3.15) bVI (±1, η) = bVI (ξ,±1) = 0.

The approximate solution to the boundary value problem (3.6) is sought in the
form of the expansion

(3.16) Wm(ξ, η) ≈
N∑

J=0

wJb
V
J (ξ, η),

where the coefficients wI , I = 1, . . . , N are to be determined. To this aim,
the representation (3.16) is plugged into the transformed Poisson equation in
(3.6) and the obtained residuum is orthogonalized with respect to the subspace
spanned by the basic functions {bVI , I = 1, . . . , N}. This procedure leads to the
following set of conditions:

(3.17)

1∫

−1

1∫

−1

(∆̃Wm + 2)bVI ω dξdη = 0, I = 1, . . . , N.

After simple algebra, the system of linear equations for unknown coefficients
{wI , I = 1, . . . , N} is obtained

(3.18)
N∑

J=1

KIJwj = rI , I = 1, . . . , N,

where

KIJ =

1∫

−1

1∫

−1

bVI ∆̃bVJ ω dξdη, I, J = 1, . . . , N,(3.19)

rI = −2

1∫

−1

1∫

−1

bVI ω dξdη, I = 1, . . . , N.(3.20)

The linear system (3.18) can be solved using the LU factorization. In the current
work, the choice of Nξ = 119 and Nη = 29 (hence, N = 3600) provides sufficient
accuracy of the main flow evaluation.
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3.3. Numerical approximation of the stability equations

In order to find the form of the normal modes and associated complex frequen-
cies, the differential eigenvalue problem (2.15)–(2.16) has to be approximated by
an algebraic eigenvalue problem. As the first step of the solution procedure, the
transformation of spatial coordinates is applied in the form depending on the
corrugation type: (3.1)–(3.3) for symmetric corrugation, or (3.4)–(3.5) for the
one-sided corrugation.

In effect, the following equations are obtained:

(3.21)

−iσû+ iβWmû = − 1

L
[∂ξ − a(η)g1(ξ)∂η ]p̂+

1

Re
(∆̃ − β2)û,

−iσv̂ + iβWmv̂ = − 1

L
γg2(ξ)∂η p̂+

1

Re
(∆̃ − β2)v̂,

−iσŵ + iβWmŵ +
1

L
û[∂ξ − a(η)g1(ξ)∂η ]Wm +

1

L
γv̂g2(ξ)∂ηWm

= −iβp̂+
1

Re
(∆̃ − β2)ŵ,

1

L
[∂ξ − a(η)g1(ξ)∂η ]û+

1

L
γg2(ξ)∂η v̂ + iβŵ = 0,

where the function a = a(η) and the constant γ are defined by (3.10) and (3.11).
The boundary conditions accompanying the Eqs. (3.21) are

(3.22) [û, v̂, ŵ](ξ = ±1, η = ±1) = 0.

The numerical approach to the system (3.21)–(3.22) is to apply the spectral
discretization and the Galerkin projection method. To this aim, two sets of the
basic functions – one for the velocity components and the other for the pressure
field – are defined in the transformed domain [−1, 1]2. The basic functions used
for the velocity components are the functions {bVI , I = 1, . . . , N} defined for the
main flow calculations in the Sec. 3.1. The amplitude functions of the velocity
components are approximated in the computational domain by the following
finite expansions:

(3.23)

û(ξ, η) =
N∑

I=1

(u1)Ib
V
I (ξ, η),

v̂(ξ, η) =
N∑

I=1

(u2)Ib
V
I (ξ, η),

ŵ(ξ, η) =
N∑

I=1

(u3)Ib
V
I (ξ, η),

where the coefficients (u1)I , (u2)I , (u3)I , I = 1, . . . , N have to be determined.
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The basic functions for the pressure disturbance field are the following poly-
nomials of the transformed spatial coordinates:

(3.24) bpI(ξ, η) = Ti(I)(ξ)Tj(I)(η), I = 1, . . . , N.

In the above formula, the mapping (i, j) → I(i, j) from a double-index numera-
tion to a single-index numeration has been applied. It is assumed that the total
number of pressure basic functions is equal to the number of the velocity ba-
sic functions. Note also that the pressure basic functions do not vanish at the
boundary of the computational domain [−1, 1]2.

The pressure amplitude function p̂ (transformed to the computational do-
main) is sought in the form of the finite expansion

(3.25) p̂(ξ, η) =

N∑

J=1

(p)Jb
P
J (ξ, η),

where the coefficients (p)J , J = 1, . . . , N should be determined.
The discretization procedure is continued as follows. First, the expansions

(3.23) and (3.25) are plugged into the transformed stability equations (3.21).
Next, the residua of these equations are projected orthogonally on the appro-
priate functions spaces. More specifically, the residua of the first three equations
are assumed to be orthogonal (in the sense of the Chebyshev inner product) to
the function space spanned by the velocity basic functions, while the residuum
of the last (continuity) equations is orthogonalized with respect to the subspace
spanned by all pressure basic functions. The result of this procedure is the fol-
lowing algebraic eigenvalue/eigenvector problem:

(3.26)

−iσu1 + Cu1 + D1p = 0,

−iσu2 + Cu2 + D2p = 0,

−iσu3 + Cu3 + B1u1 + B2u2 + iβD3p = 0,

E1u1 + E2u2 + iβE3u3 = 0.

The array structures used in (3.26) are defined as follows:

(A)I,J =
〈
bVI ,Wmb

V
J

〉

ω
, (K)I,J =

〈

bVI , ∆̃b
V
J

〉

ω
,

C = iβA − 1

Re
(K − β2I),

(D1)I,J =
1

L

〈
bVI , [∂ξ − a(η)g1(ξ)∂η ]b

P
J

〉

ω
,

(D2)I,J =
1

L
γ
〈
bVI , g2(ξ) ∂ηb

P
J

〉

ω
,

(D3)I,J =
〈
bVI , b

P
J

〉

ω
,

(3.27)
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(B1)I,J =
1

L

〈
bVI , b

V
J [∂ξ − a(η)g1(ξ)∂η ]Wm

〉

ω
,

(B2)I,J =
1

L
γ
〈
bVI , b

V
J g2(ξ)∂ηWm

〉

ω
,

(E1)I,J =
1

L

〈
bPI , [∂ξ − a(η)g1(ξ) ∂η ]b

V
J

〉

ω
,

(E2)I,J =
1

L
γ
〈
bPI , g2(ξ) ∂ηb

V
J

〉

ω
,

(E3)I,J =
〈
bPI , b

V
J

〉

ω
.

(3.37)
[cont.]

Note that for all arrays defined by the formulas (3.27) the range of indices is
I, J = 1, . . . , N .

The algebraic eigenvalue problem (3.26) contains 4N equations. On the basis
of the main flow calculations, a reasonable accuracy should be achieved with
the value of N around 3000–4000, thus the total dimension of the eigenvalue
problem (3.26) is expected to exceed 104. Since the arrays (3.27) are dense, the
solution of the problem of this size is quite demanding in both computational
resources and the memory storage. Thus, an attempt to reduce the dimension of
the problem is worth considering.

We will show that the algebraic eigenvalue problem (3.26) can be replaced
by an equivalent problem of the halved size. Here, we mean a size reduction
technique which is based on the elimination of the part of the unknowns rather
than the usage of possible symmetries (which may or may not exist) of the flow
domain.

There are basically two ways to achieve this goal. One method is to follow
the procedure proposed by Tatsumi and Yoshimura [24] for the rectangular
channel flow and transform the original stability equations (2.15) into the system
of coupled fourth-order partial differential equations for the amplitude functions
û and v̂. However, for the transversely corrugated channel, this approach is not
convenient for two following reasons. First, the domain transformation would
lead to horribly complicated expressions of the 4th-order differential operators.
Secondly, the transformed boundary conditions at the wavy walls will couple in
a complicated way both components of the velocity. It means that the analytical
construction of the velocity basic functions satisfying identically homogeneous
boundary conditions would be not possible.

An alternative approach is to transform algebraically the problem (3.26) into
an equivalent smaller problem. In the first step, the pressure unknowns (the vec-
tor p) are eliminated. To this aim, we multiply the first block equation in the
system (3.26) by the matrix E1, the second one by the matrix E2, the third one
by the matrix iβE3 and then add all three block equations together. This oper-
ation is exactly the discrete counterpart of applying the divergence operator to
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the linearized Navier–Stokes Equation. As a result, one obtains the linear system

(3.28) Sp = −(E1C + iβE3B1)u1 − (E2C + iβE3B2)u1 − iβE3Cu3,

where the matrix S is the algebraic analog of the Laplace operator and is defined
as follows:

(3.29) S = E1D1 + E2D2 − β2E3D3,

Note that all terms with the complex frequency σ have disappeared because
the vectors u1, u2 and u3 satisfy the last block equation of the system (3.26),
which is the algebraic counterpart of the continuity equation.

The matrix S is nonsingular, hence the vector p can be determined from
(3.28) as

(3.30) p = H1u1 + H2u2 + H3u3,

where

(3.31)

H1 = −S−1(E1C + iβE3B1),

H2 = −S−1(E2C + iβE3B2),

H3 = −iβ S−1E3C.

This way, the eigenvalue problem (3.26) has been replaced by the smaller problem
(the size is 3N) of the following block structure:

(3.32)






C + D1H1 D1H2 D1H3

D2H1 C + D2H2 D2H3

B1+iβD3H1 B2+iβD3H2 C+iβD3H3











u1

u2

u3




 = iσ





u1

u2

u3



 .

Although the size of the eigenvalue problem has been reduced, the form (3.32) is
still not suitable for practical calculations. To understand why the size reduction
procedure should be continued, observe that the following matrix equality holds:

(3.33) [ E1 E2 iβE3 ]





C + D1H1 D1H2 D1H3

D2H1 C + D2H2 D2H3

B1+iβD3H1 B2+iβD3H2 C+iβD3H3



 = [ 0 0 0 ].

In the above, the left factor is the rectangular matrix (having N rows and 3N
columns), while the results of the matrix multiplication is the rectangular zero
matrix. To verify (3.33), let us follow the calculations for the first block column

(3.34) E1(C + D1H1) + E2D2H1 + iβE3(B1 + iβD3H1)

= E1C− E1D1S
−1(E1C + iβE3B1) − E2D2S

−1(E1C + iβE3B1)

+ iβE3B1 + β2E3D3S
−1(E1C + iβE3B1)

= E1C + iβE3B1 − (E1D1 + E2D2 − β2E3D3)
︸ ︷︷ ︸

S

S−1(E1C + iβE3B1) = 0.
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We conclude that each row of the left rectangular matrix in the (3.33) is the left
eigenvector associated to the nonphysical zero eigenvalue of the problem (3.32).
Since the rank of the rectangular matrix is N , the multiplicity of the zero eigen-
value is also equal to N . In other words, the eigenvalue problem (3.32) has
dimension equal to 3N but it contains the information only about (at most) 2N
normal modes.

The remedy is to eliminate one of the velocity components. More specifically,
the last block of the equations in (3.26) can be used to express the vector u3 by
the vectors u1 and u2:

(3.35) u3 =
i

β
E−1

3 (E1u1 + E2u2).

After elimination of u3 from the system (3.32), we arrive at the following final
form of the eigenvalue problem:

(3.36)







C+D1

(

H1+
i

β
H3E

−1
3 E1

)

D1

(

H2+
i

β
H3E

−1
3 E2

)

D2

(

H1+
i

β
H3E

−1
3 E1

)

C+D2

(

H2+
i

β
H3E

−1
3 E2

)







[

u1

u2

]

= iσ

[

u1

u2

]

.

The size of the problem (3.36) is 2N , i.e., the original size of (3.26) has been
halved as promised. By finding the eigensolutions of (3.36), one obtains the
complex frequencies of the normal modes as well as x and y components of
the associated velocity disturbances. For each particular normal mode, the z
component of the velocity disturbance field can be determined using the formula
(3.35) and the pressure field can be found from (3.30).

The size reduction described above is of a great practical value only if we
intend to determine the whole spectrum or – at least – its sufficiently numerous
subset. In such circumstances, the application of the QZ iterative algorithm
seems justified. The highly optimized implementations of this algorithm have
been available for years in various numerical libraries, e.g., in the LAPACK
library. Since the problem (3.36) is complex and nonsymmetric, reduction of its
size by the factor of two will result in significant decrease of the computational
time (more than one order of magnitude). A substantial savings in terms of
memory will be also achieved, even though a few additional matrices of the
dimension N need to be constructed and stored.

On the other hand, the calculations of the full spectrum are definitely not
a reasonable way to assess the parametric variation of just one or even a few
selected normal modes. Indeed, such computations would necessitate a repet-
itive re-assembling of the block matrix in (3.36), which in turn requires the
re-construction of the matrices H1, H2 and H3. Note, however, that single re-
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construction process consists in solving O(N) linear system (with the matrix S)
of the dimension equal N , so the numerical cost scales with N at like O(N3).

Much more efficient way to determine a single normal mode is to use the In-
verse Power Method (IPM). The parametric variation of an invariant subspace
spanned by a few selected eigenmodes can be efficiently followed by means of the
IPM’s generalization known as the Method of Subspace Iterations [26]. In the
current study, only the first method is used, i.e., normal modes of interest have
been traced separately through the parameter space. In the IPM, each normal
mode is evaluated by an iterative procedure initialized from the solution corre-
sponding to a previous value of a parameter. For the sake of convenient reference,
such procedure, designed for the complex eigenvalue problem Mx = λx, can be
summarized as follows.

Having the approximate eigenvalue λ̃, set the normalized vector x0, the com-
plex number δ0 = 0, and perform the following computations (k = 0, 1, . . . ):

1. Solve the linear system (M− λ̃I)zk+1 = xk.
2. Find the normalization factor δk+1, i.e., such (usually complex) number

that the vector xk+1 = zk+1/δk+1 is normalized.
3. Check convergence: if |δk+1 − δk|/|λ̃| ≤ ε then calculate the eigenvalue
λ = λ̃ + δk+1 and xk+1 is the associated (and normalized) eigenvector;
otherwise go back to the step 1.

Note that the particular form of the normalization used in the IPM is not
important, except when it should uniquely fix both the magnitude and the phase
of a complex vector xk+1.

The Inverse Power Method can be applied directly to the reduced system
(3.36), but in view of the above mentioned cost of the re-generation of the block
matrix in (3.36), it is actually much more efficient to apply the IPM directly to
the original system (3.26). The key ingredient of the computational procedure
is the efficient solver of the relevant linear system (step 1 of the IPM). To this
aim, assume that (σ0;u1,u2,u3,p) is the available approximation of a selected
normal mode. Then the linear system solved in each iteration step of the IPM is

(3.37)

Cσw1 + D1q = u1,

Cσw2 + D2q = u2,

Cσw3 + B1w1 + B2w2 + iβD3q = u3,

E1w1 + E2w2 + iβE3w3 = 0,

where Cσ = iβA− 1
Re(K−β2I)−iσ0I. The exact solution of (3.37) can be found

in three steps as follows:
1) solve the linear systems

Cσŵ1 = u1, Cσŵ2 = u2, Cσŵ3 = u3;
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2) solve the linear system

Sq = E1ŵ1 + E2ŵ2 + iβE3ŵ3,

where
S = E1H1 + E2H2 + E3H3

and

H1 = C−1
σ D1, H2 = C−1

σ D2, H3 = −βC−1
σ [βD3 + i(B1H1 + B2H2)];

3) solve the linear systems

Cσw1 = u1 − D1q, Cσw2 = u2 − D2q,

Cσw3 = u3 − B1w1 − B2w2 − iβD3q.

The convergence tests have been performed in order to find the values of the
discretization parameters Nξ and Nη, giving a reasonable accuracy of evaluation
of the complex frequency corresponding to the most amplified normal mode. The
tests have been conducted for both symmetric and one-sided wall waviness. The
geometry of the corrugation chosen for the tests renders the flow particularly
unstable at this Reynolds number (see the analysis in the next section). The
computed values of the complex frequency of the most amplified normal mode
are presented in the Table 1.

Table 1. Results of the convergence tests.

Symmetric wall corrugation: L = 20, M = 9, S = 0.4. Streamwise wave number β = 0.6

Nη = 25 Nη = 29 Nη = 35

Nξ = 99 0.49292110 + 0.01728863i 0.49292110 + 0.01728863i 0.42292110 + 0.01728863i

Nξ = 109 0.49327893 + 0.01706665i 0.49327892 + 0.01706666i 0.49327892 + 0.01706666i

Nξ = 119 0.49348171 + 0.01692805i 0.49348170 + 0.01692806i 0.49348170 + 0.01692806i

Nξ = 129 0.49347311 + 0.01693104i 0.49347310 + 0.01693105i

One-sided wall corrugation: L = 20, M = 8, S = 0.8. Streamwise wave number β = 0.5

Nξ = 99 0.38166243 + 0.00940009i 0.38166242 + 0.00940008i 0.38166242 + 0.00940008i

Nξ = 109 0.38179347 + 0.00933710i 0.38179345 + 0.00933710i 0.38179345 + 0.00933710i

Nξ = 119 0.38173289 + 0.00932563i 0.38173287 + 0.00932560i 0.38173286 + 0.00932559i

Nξ = 129 0.38170551 + 0.00932725i 0.38170548 + 0.00932723i 0.38170547 + 0.00932723i

It can be seen that the convergence with respect to the numberNη is achieved
easily, while the convergence with respect to the number Nξ is more demanding.
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Such “anisotropic” behavior is actually expected since, for the large aspect ra-
tios of the channel section, numerous higher-order polynomials are necessary to
capture all the flow details in the spanwise direction. Setting of Nξ = 119 and
Nη = 29 has been eventually chosen, which seems to be a reasonable compromise
between accuracy and computational efficiency. With such setting, the number
of correct significant digits in the evaluation of the complex frequency is never
worse than three. This is not much, yet we believe that it is sufficient to justify
our final conclusions. It should be also noted that all calculations presented in
this work have been obtained by the numerical code which has been designed for
a general geometry and thus ignores intrinsic symmetries possessed by the flow
cases considered. The convergence of the eigenvalue evaluation could be certainly
improved by the method designed specially for flows with such symmetries.

4. Discussion of the obtained results

4.1. Forms of the wall corrugation

In this section, we discuss the results of the computations of the main flow
and its linear stability analysis. The discussion concerns two kinds of the trans-
versely oriented wall corrugation defined in the Sec. 2.2. More specifically, the
wall corrugation has sinusoidal shape and can be applied symmetrically to both
the bottom and top walls

(4.1) yt(x) ≡ h(x) = 1 + S cos(Mπx/L) = −yb(x),

or just to the top wall, while the bottom wall remains flat

(4.2) yt(x) ≡ h(x) = 2 + S cos(Mπx/L), yb(x) ≡ 0.

The value of the corrugation amplitude S is assumed to be positive for odd
values of M and negative for even values of M . It means that the height of the
sidewalls is the smallest possible, i.e., it is equal to 2 − 2|S| for the symmetric
waviness and or it is equal to 2 − |S| for the one-sided waviness.

4.2. Properties of the main flow

The most characteristic feature of the flow through the channel with the
bottom and top walls corrugated according to the formulae (4.1) or (4.2) is the
strong spanwise modulation of the velocity field. For the symmetric corruga-
tion (4.1), this effect is illustrated in Fig. 5, where the velocity profile across the
channel is shown. Different solid lines correspond to a different number M of
the corrugation periods across the bottom and top walls. The aspect ratio of the
channel is equal to L = 10 and the corrugation amplitude S = 0.4. The reference



Destabilization of a laminar flow in a rectangular channel. . . 415

Fig. 5. Main flow velocity distribution across the channel with symmetrically corrugated walls,
computed in the symmetry plane y = 0. Each line corresponds to a different number M of
the corrugation periods. The velocity profile of the flow in the reference rectangular channel is
depicted by the thick dashed line (indicated by the symbol R). The geometric parameters are

L = 10 and S = 0.4.

velocity profile of the flow through the rectangular channel is presented by the
dashed line.

The velocity field of the main flow in the symmetrically corrugated channel
with L = 10, M = 5 and S = 0.4 has been shown also by the contour map in
Fig. 6a. The flow through the channel with the same value of the aspect ratio

a)

b)

Fig. 6. Contour maps of the main flow velocity magnitude computed for the channel with the
aspect ratio L = 10 and: a) symmetric corrugation with M = 5 and S = 0.4, b) one-sided

corrugation with M = 5 and S = 0.8.
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L and the number of the corrugation periods M , but with the one-sided wall
corrugation (4.2) with the amplitude S = 0.8, is shown in Fig. 6b. Strong mod-
ulation of the flow velocity in the transversal direction, as well as the presence
of inflection points is evident from all these plots. It can be also observed for
short-wave corrugations, i.e., corresponding to larger values of M (like M = 8),
that the modulation amplitude and the average value of the flow velocity are
visibly smaller. This effect translates directly to the reduction of the flow rate
or – equivalently – to the rise of hydraulic resistance. On the other hand, if the
wavelength of the wall corrugation rises, then the flow resistance drops and for
sufficiently large wavelength (small values of M) it becomes smaller than that
for the rectangular channel of the same aspect ratio. This effect is demonstrated
in Fig. 7a and 7b, respectively, for the symmetric and one-sided wall corruga-
tion. The aspect ratio of the channel section is L = 10. It can be concluded
from Fig. 7a that the sinusoidal symmetric wall corrugation (4.1) diminishes
the flow resistance in such a channel, as long as the number of corrugation pe-
riods M is not larger than 4. The gain in the flow rate computed for M = 1
and the amplitude S = 0.5 is the largest and exceeds by 40% the flow rate
in the rectangular channel with the same aspect ratio! On the other hand, us-
ing corrugation with shorter periods (M larger than 4) leads to the flow rate
reduction, i.e., the flow resistance increases. In particular, for M = 8 and the
amplitude S = 0.5, the flow rate drops under 70% of the flow rate in the rec-
tangular channel. In case of one-sided wall corrugation, the effect is similar,

a) b)

Fig. 7. The effect of transversal wall corrugation on the hydraulic resistance of the main flow.
The ratio of the volumetric flow rate to the flow rate of the reference rectangular channel
is plotted versus the amplitude S of the corrugation. The aspect ratio of the channel section
is L = 10. Lines in the plot correspond to a different number M of the corrugation periods. Two

cases are shown: a) symmetric corrugation and b) one-sided corrugation.
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however, the “neutral” number of the corrugation periods M seems to be shifted
a bit into longer wavelengths: the corrugation with M = 4 causes now a slight
increase rather than reduction of the flow resistance. More details about the
impact of the transversely oriented wall corrugation on the hydraulic resistance
of the channel flow will be provided in the paper [27]. Also, it should be noted
that the relation between the flow resistance and the number of the corrugation
periods M (or the corrugation wavelength) is generally consistent with the ear-
lier author’s findings concerning the flow through the spanwise-periodic channel
(see [22]).

4.3. Linear stability characteristics

In this section, the results of the linear stability analysis are presented.
The investigation is focused mostly on the stability properties of the flow in
the channels with large aspect ratios: the considered cases are L = 10 and
L = 20. The stability analysis has been conducted numerically in the follow-
ing order. First, the normal modes most susceptible for amplification by trans-
versely oriented wall corrugation have been identified. Next, the range of the
streamwise wave number β corresponding to the unstable normal mode has
been determined for a different number M of the corrugation periods across
the channel. The analysis has been concluded with the calculation of the neu-
tral stability curves in the Re − β plane and determination of sample flow
patterns.

For sufficiently large aspect ratios, the low-Reynolds-number instability can
be expected in roughly the same region of the parameter space as it was
found for the flow in the periodic channel. It has been demonstrated in [21]
and [22] that the unstable normal mode of the periodic channel flow is re-
lated to the particular Squire mode from the Poiseuille spectrum. The wave
vector of this mode is k = [kx, ky, kz ] = [0, 0, β]. The values of the streamwise
wavenumber β corresponding to the mode most susceptible for destabilization
has been computed to be around 0.4 and the most destabilizing wavelength of
the periodic wall corrugation is about 3 times larger than the average channel
height.

The stability analysis of the flow in the corrugated channel with sidewalls
has confirmed the expected parametric localization of the instability region. In
particular, the complex frequencies of the normal modes, which are most sus-
ceptible for the low-Re destabilization by wall deformation, have been identified
in the analogous part of spectrum of the rectangular channel flow. These fre-
quencies, computed for L = 20, β = 0.6 and Re = 100, are indicated in the
plot presented in Fig. 8. It has been found that the attenuation rates of the
corresponding normal modes can be extremely sensitive to the wall corrugation
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Fig. 8. Eigenvalues (complex frequencies) associated to the normal modes of the flow in
the rectangular channel. Only the modes with σI ≥ −0.25 are shown. The channel section
aspect ratio is L = 20, the Reynolds number is Re = 100 and the streamwise wave number
is β = 0.6. The eigenvalues corresponding to the normal modes which are the most suscepti-
ble to destabilization by transversely oriented wall corrugations are indicated in the zoomed

part of the plot.

described by (4.1) or (4.2), especially for appropriately chosen number M of the
corrugation periods. Plots in Fig. 9 illustrate this effect for the flow in the chan-
nel with the aspect ratio L = 20 and the Reynolds number Re = 100. The plots
in Fig. 9a have been computed for the symmetric wall corrugation with M = 9
and the streamwise wave number β = 0.6. It can be observed that the mode M1

becomes unstable when the amplitude S exceeds the value of 0.23. For S larger
than 0.27 also the mode M2 is unstable. Both modes remain unstable for the
corrugation amplitudes rising up to 0.5, however the largest amplification rate
is attained at S = 0.425 and then slowly diminishes. Similar features are ob-
served in Fig. 9b where the analogous results obtained for one-sided corrugation
with M = 8 are presented. This time, the streamwise wave number is β = 0.5.
The mode M1 loses stability when the amplitude S becomes larger than 0.46,
i.e., the amplitude is doubled in comparison with symmetric corrugation. The
second mode M2 becomes unstable when the amplitude S is larger than 0.62.
Similarly to the symmetric case, the amplification rate σI of both modes attains
the maximum at nearly the same value of the corrugation amplitude, i.e., when
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a)

b)

Fig. 9. Complex frequency of two most amplified normal modes plotted versus the amplitude S:
a) symmetric corrugation with M = 9 wavelengths across the channel, b) one-sided corrugation
with M = 8 wavelengths across the channel. In both cases, the aspect ratio is L = 20 and
the Reynolds number is Re = 100. The streamwise wave number is: a) β = 0.6, b) β = 0.5.

S = 0.75. For larger amplitudes, the amplification rate slowly diminishes and
for the mode M2 is becomes negative (i.e., this mode is stable again) when S is
larger than 0.86.

In both cases of the wall corrugation, the unstable modes have nonzero
real parts of their complex frequencies, i.e., they have the form of travelling
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disturbance waves. The phase speed of the disturbance wave (defined by the
ratio vph = σR/β) is nearly the same for both modes, irrespectively of the
variant of the corrugation. This speed generally diminishes with the corruga-
tion amplitude S (except for the small values of S where the slight increase
of σR can be noticed). For the rectangular channel (S = 0), the phase speed
of both modes is close to 0.9, while in the conditions of the maximal corruga-
tion considered, it drops to the value of 0.75 in the symmetric case and 0.68
in the one-sided case. In such conditions the disturbances described by the
mode M2 travel along the channel slightly faster than those corresponding to
the mode M1.

In the remaining part of this section, the parametric study of the stability
characteristics of the most amplified mode M1 is conducted. The parametric
variation of the amplification rate of this mode σI with respect to the stream-
wise wave number β has been presented in Fig. 10. All plots have been obtained
for the Reynolds number Re = 100. The plot on Fig. 10a has been computed
for the channel aspect ratio L = 10 and symmetric corrugation with the ampli-
tude S = 0.4. In can be seen that the strongest destabilization effect is achieved
when M = 5. This corresponds to the corrugation period two times larger than
the average height of the channel. The most amplified mode has the streamwise
wave number β = 0.7. Other values of M which can destabilize the flow at the
Reynolds numbers Re = 100 are also shown. The following rule is evident: the
corrugation with longer/shorter period (smaller/larger M) destabilizes mostly
the mode with longer/shorter wavelength (smaller/larger streamwise wavenum-
ber β). Similar relation has been found earlier for the flow in the spanwise-
periodic channel [21, 22].

When the aspect ratio of the channel is increased to L = 20, then one obtains
the results shown in Fig. 10b. Now, the most destabilizing geometry correspond
to M = 9. It means that the wavelength of the optimal corrugation in larger
than for L = 10. At the same time, the amplification rate assumes larger values.
Moreover, the wall corrugations with the number of periods equal to M = 6 or
M = 12 also lead to flow destabilization, while their counterparts for L = 10,
i.e., M = 3 and M = 6 do not. This effect is evidently due to the fact that the
influence of the sidewalls is reduced with increasing aspect ratio.

In Fig. 10c, analogous results obtained for the one-sided wall corrugation
with the amplitude S = 0.8 are presented. The strongest destabilization of
the mode M1 is obtained for the corrugation with M = 8, i.e., for the cor-
rugation period larger than in the case of symmetric corrugation. Smaller val-
ues of the amplification rate are observed as it has been already mentioned.
The range on unstable wave numbers β is generally shifted to the left, i.e.,
one-sided wall corrugation will tend to excite disturbances with larger wave-
length.
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a)

b)

c)

Fig. 10. Amplification rate σI of the unstable normal mode plotted versus the streamwise
wavenumber β. The Reynolds number is Re = 100. Each line corresponds to a different number
M of the corrugation periods across the channel. Three cases are shown: a) L = 10, symmetric
corrugation with S = 0.4, b) L = 20, symmetric corrugation with S = 0.4 and c) L = 20,

one-sided corrugation with S = 0.8.
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The results of the linear stability analysis can be conveniently summarized
in the form of the neutral stability lines (NSL) in the Re-β plane. Along these
lines, the amplification factor of the most amplified mode is zero. In Fig. 11a, the
NSL computed for the flow in the channel with the aspect ratio L = 10 and the
symmetric wall corrugated withM = 5 are shown. Each line has been determined
for a different value of the corrugation amplitude S. The regions inside the

a)

b)

c)

Fig. 11. Neutral stability lines plotted in the plane Re − β and computed for different values
of the corrugation amplitude S. Three cases are shown: a) L = 10 and symmetric corrugation,

b) L = 20 and symmetric corrugation and c) L = 20 and one-sided corrugation.
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NSL correspond to linearly unstable flows and the turning point corresponds to
the critical conditions. It can be noticed that the minimal value of the critical
Reynolds number computed for S = 0.4 and S = 0.5 is nearly the same and
equal about 78.

If the aspect ratio of the channel section is increased to L = 20 and the
number of corrugation periods is M = 9, then the NSL assume the shape shown
in Fig. 11b. It can be noticed that the amplitude S = 0.4 is the most destabilizing
among the considered geometries. The critical Reynolds number drops to 65
which is close to 58 obtained in [22] for the channel of infinite width. The critical
value of the streamwise wave number β is close to 0.6.

In Fig. 11c, the neutral stability lines computed for the channel with the
aspect ratio L = 20 and the one-sided wall corrugation with M = 8 are pre-
sented. The corrugation amplitudes have been chosen to be doubled amplitudes
from Fig. 9b. Comparison with the symmetric case leads to the conclusion that
one-sided corrugation is generally less effective in destabilizing the flow. The
lowest value of the critical Reynolds number has been obtained for S = 0.8
and it is equal about 74. The critical value of the streamwise wave number β is
approximately equal 0.48.

Finally, we will discuss shortly the flow disturbance patterns related to the
unstable normal modes M1 and M2. We consider only the case of the channel with
the aspect ratio L = 20 and symmetric wall corrugation. The Reynolds number
is Re = 100 and the streamwise wave number is β = 0.6. The velocity field of the
disturbances, corresponding to the normal mode M1 and evaluated in the channel
central plane y = 0, is shown in Fig. 12. The upper vector plot (a) presents
the velocity field of the mode M1 computed for the flow in the rectangular
channel (S = 0), while the bottom vector plot (b) shows the velocity pattern
of the same mode computed for the corrugated channel with the amplitude
S = 0.4.

It should be noted that far away from the sidewalls, both patterns of distur-
bances are very much similar to the disturbance field of the unstable Squire mode
in the infinite channel, see [21] and [22]. If there are no sidewalls and no corruga-
tion (S = 0), then the only nonzero component of the velocity disturbance field
is the x-component, i.e. the component along the spanwise direction. In the pres-
ence of the sidewalls, i.e. in the rectangular channel, such form of disturbances is
obviously impossible and the flow turns around in the vicinity of the sidewalls,
giving rise to a characteristic pattern of a circular motion shown in Fig. 10a.
When the wall corrugation is present, then the characteristic array of vortices
appears. Again, at the lack of the sidewalls, this pattern is periodic in both the
streamwise (z) and spanwise (x) directions. In the channel with sidewalls, the
spanwise periodicity is lost and the magnitude of disturbance diminishes while
the sidewalls are approached.
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a)

b)

Fig. 12. The velocity field of the most amplified normal mode M1 evaluated in the plane y = 0
for the rectangular (a) and symmetrically corrugated (b) channels. The aspect ratio is L = 20
and the corrugation parameters are M = 9 and S = 0.4. In both cases, the Reynolds number

is Re = 100 and the streamwise wave number is β = 0.6.

In Fig. 13, the analogous vortex maps are shown for the second unstable
mode M2. All parameters are the same as in Fig. 12. In contrast to the mode M1,
the flow pattern of the mode M2 does not have any direct counterpart in the
flow through the periodic channel. The mode M2 has an extra symmetry plane
x = 0, in all other respects the flow pattern in the corrugated channel is sim-
ilar to the mode M1. It should be noted that the normal modes with multiply
symmetry planes parallel to the plane x = 0 can also exist if the number of
the corrugation periods are sufficiently large. These modes are, however, at-
tenuated for the low Reynolds numbers, which are of the main interest in this
study.
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a)

b)

Fig. 13. The velocity field of the second most amplified normal mode M2 evaluated in the
plane y = 0 for the rectangular (a) and symmetrically corrugated (b) channels. All settings like

in Fig. 12.

5. Summary and conclusions

The instability of the laminar channel flow induced by the transversal wall
corrugation, either symmetric or one-sided, has been investigated numerically.
In contrast to earlier works, the channel width is assumed to be finite, i.e., the
flat sidewalls are present. Both the main flow and the field of flow disturbances
are approximated, with spectral accuracy, by means of the Galerkin projection
method. The calculations are conducted in the transformed computational do-
mains, where the boundary conditions are satisfied exactly. This approach has
allowed for investigation of the wall corrugations with large amplitudes. The
unstable normal modes have been identified and their parametric variation has
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been determined. The lines of neutral stability (the critical lines) have been
computed numerically for selected cases of the wall corrugation. The patterns of
disturbance velocity field corresponding to a pair of the most amplified normal
modes have been determined.

The main conclusions from this research can be summarized as follows:
• The transversal corrugation of the channel walls can be used to destabilize

the flow in the rectangular channel at the Reynolds number lower than
100. The shape of the corrugation which is appropriate for this purpose
has only marginal influence on the flow resistance. This property makes the
transversal corrugation more attractive than the longitudinal one, where
significant increase of the pressure losses is inevitable.

• For sufficiently large aspect ratios, the influence of the sidewalls is weak
and the stability properties of the flow do not differ much from the char-
acteristics obtained by Szumbarski in [22] for the flow through periodic
channel.

• The most destabilizing form of the corrugation among the configurations
studied in this work is the symmetric sinusoidal wall corrugation. When
compared to the case of the spanwise-periodic channel, the wavelength of
the most destabilizing symmetrical corrugation is smaller and its amplitude
is slightly larger. The destabilization effect brought about by the one-sided
corrugation, is similar to the effect of symmetric corrugation, providing
that the amplitude of the former is twice as large.

• In both variants of the wall corrugation, the maximal effect of flow destabi-
lization (i.e., the largest value of the amplification rate of the most unstable
normal mode) is achieved for a certain optimal value of the corrugation am-
plitude. For the Reynolds number Re = 100, the optimal value has been
estimated to be about 22% and 38% of the averaged height of the channel
for the symmetric and one-sided case, respectively.

• The critical Reynolds number of the flow diminishes with increasing as-
pect ratio of the channel section approaching asymptotically the value
corresponding to the periodic channel. For the aspect ratio L = 10, ReL is
equal to 78, but for L = 20 it drops to 64 which is close to the asymptotic
value of 58 determined by Szumbarski [22]. Since the destabilization effect
of one-sided corrugation is weaker, the corresponding value of ReLis larger,
i.e., it is equal 74 for the aspect ratio L = 20.

• Similarly to the flow in the periodic channel, the most unstable mode has
the form of the streamwise periodic array of the counter-rotating vortex
structures. The spanwise periodicity is lost for obvious reasons and the
magnitude of the flow disturbance near the sidewalls is small due to the
no-slip condition. This pattern of disturbances travels downstream with
the phase speed vph = σR/β. For smaller values of the corrugation ampli-
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tude S, this velocity is close to 0.9 and it drops with increasing S reach-
ing the value around 0.7 for one-sided corrugation with the amplitude
S = 1.0. Downstream motion of the vortex structures implies that the flow
field developed in the nonlinear saturation process is expected to be fully
three-dimensional and oscillatory. Further investigations, including direct
numerical simulations, are necessary to find out whether these acquired
qualities are sufficient to achieve conditions of effective (chaotic) mixing.
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