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Biological signals in cells are transmitted with the use of reaction cycles, such as the
phosphorylation-dephosphorylation cycle, in which substrate is modified by antagonistic enzymes.
An appreciable share of such reactions take place in crowded environments of two-dimensional
structures, such as plasma membrane or intracellular membranes, and are expected to be diffusion-
controlled. In this work, starting from the microscopic bimolecular reaction rate constants and using
estimates of the mean first-passage time for an enzyme–substrate encounter, we derive diffusion-
dependent effective macroscopic reaction rate coefficients (EMRRC) for a generic reaction cycle.
Each EMRRC was found to be the half of the harmonic average of the microscopic rate constant
(phosphorylation c or dephosphorylation d), and the effective (crowding-dependent) motility divided
by a slowly decreasing logarithmic function of the sum of the enzyme concentrations. This implies
that when c and d differ, the two EMRRCs scale differently with the motility, rendering the steady-
state fraction of phosphorylated substrate molecules diffusion-dependent. Analytical predictions
are verified using kinetic Monte Carlo simulations on the two-dimensional triangular lattice at the
single-molecule resolution. It is demonstrated that the proposed formulas estimate the steady-state
concentrations and effective reaction rates for different sets of microscopic reaction rates and concen-
trations of reactants, including a non-trivial example where with increasing diffusivity the fraction
of phosphorylated substrate molecules changes from 10% to 90%.
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Chemical Physics, 2015, available via DOI: 10.1063/1.4936131. © 2015 AIP Publishing LLC.

I. INTRODUCTION

In numerous cellular information-processing pathways,
signaling is initiated on the plasma membrane. Upon
ligand binding, membrane receptors are modified chem-
ically, which enables them to transfer the extracellular
signal to the secondary, intracellular messengers. Due
to the presence of membrane-anchored enzymes of an-
tagonistic catalytic activity the activating modifications
are reversible [1]. The membrane of mammalian cells
of a diameter of order of 10 µm is considered to be a
crowded environment, characterized by low diffusivity
of order of 0.1–0.01 µm2/s. Consequently, biochemical
reactions on the plasma membrane are expected to be
diffusion-controlled [2].

∗ Electronic mail: tlipnia@ippt.pan.pl

The aim of this study is to derive the diffusion-
controlled effective macroscopic reaction rate
coefficients, EMRRCs, in the cycle of antag-
onistic reactions. Such cycles, exemplified by
the phosphorylation–dephosphorylation cycle,
ubiquitination–deubiquitination cycle, acetylation–
deacetylation cycle, or the GTPase cycle, allow for fast
substrate reuse and are of fundamental importance in
cellular signal transduction and amplification, enabling
rapid transmission of extracellular signals to effector
proteins such as transcription factors.

There have been numerous attempts to derive
diffusion-dependent EMRRCs that govern processes in
a macroscale chemical reactor. Most of the existing re-
sults, discussed in more detail in the Introduction to our
previous study [3], involved relatively simple reactions
schemes. In short, the irreversible reaction schemes in-
cluded:

• A + B → C or A + B → ∅ considered ini-
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tially by von Smoluchowski [4] and later by, i.a.,
Collins and Kimball [5], Naqvi [6], Emais and Fe-
hder [7], Torney and McConnel [8], and Toussaint
and Wilczek [9, 10];

• A+B → A+C and A+B → AB → A+C studied
by Szabo [11], Zhou [12], Kim et al. [13], and Park
and Agmon [14, 15].

There were also many studies on reversible reaction
schemes such as:

• A + B 
 C considered by Zel’dovich and Ovchin-
nikov [16], Berg [17], Edelstein, Gopich, Ag-
mon, and Szabo [18–21]. Takahashi et al. [22]
studied a more complex, double phosphorylation–
dephosphorylation cycle based on this simple reac-
tion scheme, and Dushek et al. [23] studied even
longer chains of such cycles in membrane proteins.
More recently, substrate rebinding was studied by
van Zon et al. [24] and Govern et al. [25];

• A + B 
 C + D studied by Agmon and col-
leagues [26–28], and by Szabo and Zhou [29].

In this theoretical work following our recent numer-
ical study [3], we will investigate a phosphorylation–
dephosphorylation cycle, which consists of two reactions:
K + Su → K + Sp, P + Sp → P + Su. In this scheme, sub-
strate molecules (S) assume either the phosphorylated
(Sp) or unphosphorylated (Su) state upon reactions with
two antagonistic enzymes: kinase (K) and phosphatase
(P). We will derive the EMRRCs and steady states as
functions of the coefficient of diffusion and concentra-
tions of the enzymes. The differences between single-
reaction schemes and the cycle of two antagonistic re-
actions is caused by the fact that in the case of limited
diffusion the antagonistic enzymes introduce heterogene-
ity in concentrations of phosphorylated and unphospho-
rylated substrate molecules. Because the EMRRCs de-
pend both on diffusivity and microscopic reaction rate
constants in the case when phosphorylation and dephos-
phorylation rate constants are different, the steady-state
phosphorylated substrate fraction depends on diffusion.
This is in contrast to a single-reaction scheme, such as re-
versible dimerization, in which the steady-state fraction
of dimerized enzymes does not depend on diffusion (see,
e.g., Ref. 21).

We will approach the microscopic limit by analyzing
on-lattice Monte Carlo kinetics of diffusing molecules un-
dergoing coupled reactions. In the previous study [3],
we assumed that each lattice site can be either empty
or occupied by a single molecule, and that phosphoryla-
tion and dephosphorylation reactions occur when sub-
strate and enzyme molecules occupy adjacent lattice
sites. Here, in contrast, we assume that substrate and
enzyme molecules may enter the same lattice sites, and
are required to be in the same lattice site in order to re-
act. By the assumption that the substrate and enzyme
molecules react only when present in the same lattice
site, the reactions cease in the zero-diffusion limit. In
the previous model, the substrate molecules having both

a kinase molecule and a phosphatase molecule at adjacent
sites were repeatedly converted between the phosphory-
lated and the unphosphorylated states, which resulted in
(sometimes significant) zero-diffusion contribution to the
macroscopic reaction rates coefficients. In the present
model there are no reactions firing in the zero-diffusion
limit.

The paper is organized as follows: In the next section
we introduce the model and numerical methods, and dis-
cuss simulations performed to verify theoretical predic-
tions. The subsequent Results section is divided into four
subsections in which we: 1) express the steady-state EM-
RRCs via the mean first-passage time, MFPT, in which a
substrate molecule after changing its state upon the reac-
tion with a given enzyme reaches an antagonistic enzyme
molecule; 2) estimate this MFPT by the average number
of steps, w(ρ), until trapping a random walker in the
system of randomly distributed traps with a given con-
centration, ρ; 3) give final estimates for the steady-state
EMRRCs and compare them with numerical results; 4)
compare these results with those of our previous study
[3]. Finally, in Conclusions we summarize and discuss the
obtained results. The paper is supplemented by three ap-
pendices: In Appendix A we give estimates of effective
motility which due to crowding is a function of the con-
centration of diffusing molecules. In Appendix B, the av-
erage number of steps until trapping, w(ρ), is estimated
numerically. In Appendix C we consider the reversible
dimerization problem A + B 
 C to show that for this
classic example our on-lattice numerical simulations and
theory agree with the steady-state analytical solution ob-
tained in the Brownian dynamics scheme.

II. METHODS

A. Model

We consider a generic phosphorylation–
dephosphorylation cycle in which two enzymes act
antagonistically on the substrate, S, which upon in-
teraction with the kinase, K, or the phosphatase, P,
may assume either the phosphorylated state, Sp, or un-
phosphorylated state, Su, respectively. The interacting
molecules are confined to the two-dimensional membrane
represented by the triangular lattice (in which each site
has six neighbors) with periodic boundary conditions.
Diffusion of molecules is modeled with stochastic hops to
adjacent lattice sites. Possible events, which are diffusive
hops and enzymatic reactions (phosphorylations and
dephosphorylations), occur with propensities defined by
motility, m, and microscopic reaction rate constants,
c and d, respectively. The propensity of hopping to
a neighboring allowed lattice site is m/6. We assume
that neither two enzyme nor two substrate molecules
can enter the same lattice site. The enzyme and the
substrate molecules, however, may enter the same lattice
site and have to be in the same lattice site to react
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according to the following reaction scheme:

K + Su
c−→ K + Sp, (1a)

P + Sp
d−→ P + Su. (1b)

The molecules remain in the same lattice site after re-
acting, and then can leave the site independently with
propensities defined by their motility. Microscopic phos-
phorylation and dephosphorylation rate constants, c and
d, motility, m, and concentrations of the substrate, ρS,
kinase, ρK and phosphatase, ρP, as well as the volume of
the reactor (i.e., the total number of lattice sites), V , de-
fine the model. Concentrations ρ are defined as numbers
of molecules per reactor volume, i.e., fractions of lattice
sites occupied by molecules of a given type. Concentra-
tions of phosphorylated and unphosphorylated substrate
are denoted by ρSp and ρSu .

In the proposed approach the enzymatic reactions
are modeled without considering explicitly the enzyme–
substrate complex formation which allowed us to obtain
analytical results. This assumption can be questionable
in the case of high enzyme sequestration, however, in the
case of the weak and moderate sequestrations the explicit
inclusion of the enzyme–substrate complexation does not
qualitatively influence the phosphorylated substrate frac-
tion in equilibrium, as we demonstrated in our previous
numerical study [3].

Our aim is to analytically derive formulas for the ef-
fective macroscopic reaction rate coefficients (EMRRCs),
ceff and deff, as functions of microscopic reaction rates c
and d and the remaining parameters of the model. The
EMRRCs are defined as:

ceff =
np

ρSuρKV∆t
, (2a)

deff =
nu

ρSpρPV∆t
, (2b)

where np and nu are the numbers of phosphorylation and
dephosphorylation reactions, respectively, that fired dur-
ing a short time interval, ∆t. We restrict our study to
the steady-state values of EMRRCs, which can be deter-
mined by averaging over long time intervals.

When the number of molecules present in the system is
large, EMRRCs govern the system of ordinary differential
equations for ρSu and ρSp :

d
dtρSu = −ceffρKρSu + deffρPρSp , (3a)
d
dtρSp = ceffρKρSu − deffρPρSp . (3b)

These two equations are complementary, since their so-
lutions satisfy ρSu(t) + ρSp(t) = ρS = const. The steady-
state solution of Eqs. (3) is:

ρSu =
deffρP

ceffρK + deffρP
ρS, (4a)

ρSp =
ceffρK

ceffρK + deffρP
ρS. (4b)

B. Numerical simulations

To verify the accuracy of the analytically derived for-
mulas, the model will be analyzed by means of spatial
kinetic Monte Carlo (KMC) simulations employing the
software we described and used previously [3, 30, 31].
Before each step of the KMC simulation, a list of all
possible events on the lattice is available. Time-step is
drawn at random from the exponential distribution with
the propensity parameter equal to the sum of the propen-
sities of all possible events. A displacement or reaction
event is selected from the complete list of events at ran-
dom, with probability proportional to its propensity, and
is executed. Then, before the next step, the list of all pos-
sible events is updated. Since the change in the system
configuration after every simulation step is local, only a
partial update of the list is necessary. By drawing events
from the list which is always complete, there is no need
to simulate trial events that would be subsequently re-
jected; this renders the method efficient. Such approach
is equivalent to a stochastic simulation according to the
Gillespie algorithm [32] applied to a spatially extended
problem.

The EMRRCs were numerically estimated based on
Eqs. (2) using long-run simulations performed on the
300× 300 lattice (except for simulations shown in Fig. 1,
which were performed on smaller lattices as indicated in
the figure caption, and simulations for Fig. 2 (c), which
were performed on the 1000×1000 lattice to estimate the
dependence of accuracy of simulation-based estimates on
the lattice size). For each analyzed set of parameters
we performed 3 independent simulations which were long
enough to allow for at least 3× 104 reaction firings; only
for simulations shown in Fig. 1 we performed 9 indepen-
dent simulations, with at least 5 × 103 reactions each.
This allowed us to determine the EMRRCs numerically
with the relative error smaller than 1%.

We used the same simulation code to estimate the av-
erage number of steps made by a single random walker
until trapping by one of randomly distributed immobile
traps (see Appendix B). To analyze a broad range of
trap concentrations, ρ ∈ [0.0001; 0.1], simulations were
performed on 1000 × 1000 lattices. The concentration
of walkers was set to 0.001, which is a reasonable trade-
off between the requirement of satisfactory statistics in a
modest computational time and the requirement of a neg-
ligible number of collisions between walkers. After reach-
ing a trap a walker was immediately degraded. Since
traps are immobile, the computational cost is propor-
tional to the number of remaining walkers, and thus the
simulations speed up with time, which allowed us to per-
form simulations until all walkers were trapped. For each
set of parameters, the simulations were performed 1000
times, so the calculation of the average number of steps
before trapping was based on averaging over 106 walkers.
Finally, the average number of steps was calculated as
w = m × τdeg, where τdeg is the average time to walker
degradation. To verify the accuracy of our method we
performed analogous simulations in the case when an-
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alytical expression for w is known, i.e., when traps are
distributed periodically [33].

The on-lattice numerical simulations have the obvi-
ous limitations resulting from space discretization. It is
therefore important to verify whether the proposed ap-
proach leads to correct results, at least for the classic

reverse dimerization problem, A + B 
 A · B k

q
C, for

which the analytical relation between the steady-state
densities of A, B, and C molecules, ρC = (k/q)ρAρB, is
known for the Brownian-type dynamics. In Appendix C,
we show that the same relation can be derived based on
the on-lattice approach, in which dimers C arise from
the geminate substrate pairs A ·B that are formed when
A and B molecules enter the same lattice site. We also
demonstrate that this relation is satisfied by our numer-
ical simulations to a good accuracy.

III. RESULTS

In the infinite-motility limit the probability of find-
ing a given molecule is uniform on the lattice. Thus, at
any time the concentration of enzyme–substrate pairs is
given by the product of their concentrations: the kinase–
unphosphorylated substrate pair concentration equals
ρKρSu , and the phosphatase–phosphorylated substrate
pair concentration equals ρPρSp . The numbers of phos-
phorylation and dephosphorylation reactions that fired
during a time interval ∆t in a reactor of volume V are
c ρKρSuV∆t and d ρPρSpV∆t, and thus from definitions
in Eqs. (2) the EMRRCs in the infinite-motility limit are
equal to:

c∞eff = c, d∞eff = d. (5)

In the case of finite motility, the concentration of
enzyme–substrate pairs is smaller than the product of
their concentrations so ceff < c and deff < d. This re-
sults from the spatiotemporal correlations: a substrate
molecule located in the same lattice site as a kinase
molecule has an increased chance of being in the phospho-
rylated state and, symmetrically, a substrate molecule lo-
cated in the same lattice site as a phosphatase molecule
has an increased chance of being in the unphosphorylated
state.

A. Relation between MFPTs and EMRRCs

The steady-state fractions of unphosphorylated and
phosphorylated substrate, ρSu/ρS and ρSp/ρS, can be
expressed in terms of the average time intervals during
which a substrate molecule remains unphosphorylated,
τu, and phosphorylated, τp:

ρSu

ρS
=

τu
τu + τp

,
ρSp

ρS
=

τp
τu + τp

. (6)

Now, using Eqs. (4) we can express ceff and deff through
τu and τp:

ceff =
1

τuρK
, deff =

1

τpρP
. (7)

To calculate time intervals τu and τp we split them into:

τu = τu1
+ τu2

, τp = τp1
+ τp2

, (8)

where τu1
(τp1

) is MFPT in which a substrate molecule
after being modified by a phosphatase (kinase) molecule
meets a kinase (phosphatase) molecule for a first time,
and τu2

(τp2
) is the average time after which a substrate

molecule occupying initially the same lattice site as a
kinase (phosphatase) molecule becomes phosphorylated
(unphosphorylated).

Time intervals τu and τp depend on the effective motili-
ties of enzyme and substrate molecules, m̃E and m̃S. The
effective motilities are lower than the nominal motility of
all molecules, m, due to molecular crowding, and when
ρE 6= ρS, then m̃E and m̃S differ because enzyme and sub-
strate molecules are crowding agents only for themselves.
The effective relative motility of enzyme and substrate
molecules is M̃ = m̃E + m̃S. The time between encoun-
ters of enzyme and substrate molecules scales inversely
with M̃ . Following the original paper by van Beijeren
and Kutner [34] and our previous study [3], we provide
approximate formulas for m̃E and m̃S in Appendix A.

We first calculate τu2
. When an unphosphorylated sub-

strate molecule and a kinase molecule meet in the same
lattice site, two exclusive events are possible: either the
substrate molecule gets phosphorylated or the molecules
move apart before the reaction fires. The expected time
for which an unphosphorylated substrate molecule and a
kinase molecule remain in the same lattice site, τshort, is
inversely proportional to the sum of rates of these two
events, τshort = 1/(c+ M̃). With the probability of the
phosphorylation event, which is c/(c+ M̃), τu2 will be
equal to τshort, and with the probability of the separa-
tion event, which is M̃/(c+ M̃), τu2 will be equal to τlong,
which is the expected time for substrate molecule phos-
phorylation in the case when it moves away from the
kinase molecule. Taken together, τu2

can be expressed
as:

τu2 =
c

c+ M̃
τshort +

M̃

c+ M̃
τlong, (9)

where

τlong = τfind + τshort + τu2 . (10)

Here, τfind is the average time for the substrate molecule
to meet a kinase molecule (the same or another) under
the condition that it is in a site adjacent to a site occu-
pied by a kinase molecule. When the substrate molecule
meets a kinase molecule, the initially considered situation
reoccurs and therefore the third term is τu2

.
To calculate τfind let us notice that since the fraction

of lattice sites occupied by kinase molecules is equal to
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ρK, on average every 1/ρK steps the substrate molecule
meets a kinase molecule. This is, when a substrate
molecule and a kinase molecule occupy the same lat-
tice site, the expected number of steps after which the
substrate molecule meets the same or another kinase
molecule is 1/ρK. Therefore, if these two molecules are
located in adjacent lattice sites, i.e., when one step to-
ward next meeting has already been done, the expected
number of steps is 1/ρK − 1. Thus

τfind =
1/ρK − 1

M̃
. (11)

Finally, Eq. (9), Eq. (10), and Eq. (11) together yield

τu2 =
c

c+ M̃

1

c+ M̃
+

M̃

c+ M̃

(
1/ρK − 1

M̃
+

1

c+ M̃
+ τu2

)
,

(12)
from which we obtain a simple expression for τu2 and an
analogous expression for τp2

:

τu2
=

1

c ρK
, τp2

=
1

d ρP
. (13)

To complete calculations of τu and τp we need to esti-
mate τu1

and τp1
. These two MFPTs can be expressed

as:

τu1
=
w(ρP, ρK)

M̃
, τp1

=
w(ρK, ρP)

M̃
, (14)

where w(ρP, ρK) and w(ρK, ρP) are the expected numbers
of steps needed for a substrate molecule to reach a kinase
and phosphatase molecule, respectively, after being con-
verted by a phosphatase (kinase) molecule. Eventually,
we arrive at the following formulas:

ceff =
1

(τu1
+ τu2

)ρK
=

(
1

c
+
ρK w(ρP, ρK)

M̃

)−1
, (15a)

deff =
1

(τp1
+ τp2

)ρP
=

(
1

d
+
ρP w(ρK, ρP)

M̃

)−1
. (15b)

B. Estimation of MFPTs

The MFPTs τu1 and τp1
, Eqs. (14), are simple func-

tions of w(ρP, ρK) and w(ρK, ρP) which need to be esti-
mated.

Under the assumption that the search for enzyme
molecules of an appropriate type starts from a random
position, functions w(ρP, ρK) and w(ρK, ρP) can be sim-
plified to

w(ρP, ρK) = w(ρK), w(ρK, ρP) = w(ρP). (16)

To understand when the above simplifying assumption is
valid, let us consider the case when on the lattice there
is only one kinase molecule and a large number of phos-

phatase molecules. In such a case, a substrate molecule
phosphorylated on the kinase molecule will be dephos-
phorylated in its vicinity by one of numerous phosphatase
molecules, and therefore the next search for the single
kinase molecule will start not from a random position
with respect to the kinase molecule but more likely from
its vicinity. Thus, in the considered case, the assump-
tion is not valid for the phosphorylation reaction; how-
ever, since there is only one kinase molecule and thus
the expected time to phosphorylation is relatively long,
the abundant phosphatase molecules change significantly
their positions between two dephosphorylation reactions,
so that one can assume that the search for a phosphatase
molecule starts from a random position with respect to
positions of phosphatase molecules.

Now, let us consider the system of N different enzyme
molecules, Ei, i = 1, ..., N , and assume that each en-
zyme molecule Ei converts substrate molecules to the
distinct state Si with reaction rate q. Let us assume that
N � 1 and let ρE denote the total concentration of all
enzyme molecules. In light of the observation made in
the previous paragraph, substrate molecules converted
by Ei (i.e., in state Si) will start their search for the re-
maining N − 1 enzyme molecules at a position that can
be considered random (with respect to remaining enzyme
molecules). Thus, the average time τ for which the sub-
strate molecules will remain in each of states Si is (by
analogy to Eqs. (8), with Eqs. (13) and Eqs. (14), and
since the concentration of N − 1 enzyme molecules is
≈ ρE)

τ =
1

q ρE
+
w(ρE)

M̃
. (17)

The number of reactions per substrate molecule, per
time, is equal to r = 1/τ . Let us assume that one part
of these enzyme molecules are kinase molecules and the
rest are phosphatase molecules, so that ρK + ρP = ρE.
Therefore, the probability that an unphosphorylated sub-
strate molecule will be converted in the next reaction to
the phosphorylated state is ρK/ρE, while with the prob-
ability of ρP/ρE it will be converted to another unphos-
phorylated state (such pseudo-conversions are possible
because we assumed that each enzyme molecule converts
the substrate to a distinct state). The number of real
phosphorylation reactions (i.e., conversions from the un-
phosphorylated to the phosphorylated state) per unphos-
phorylated substrate molecule is rp = r × ρK/ρE, and
therefore the average time spent by a substrate molecule
in the unphosphorylated state is τu = 1/rp = τ × ρE/ρK.

From ceff = 1/(τuρK), Eqs. (7), we obtain

ceff =

(
1

q
+

1

M̃
ρE w(ρE)

)−1
. (18)

To derive the above equation we had to assume that all
substrate states, Si, are equiprobable, which requires c =
d = q. In the case when c 6= d we propose to replace q
by c or d, appropriately, which leads to the following
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FIG. 1. Single enzyme pair model, analytical expression in
Eqs. (21) versus numerical estimates. (a) Normalized effective
phosphorylation rate coefficient ceff/c as a function of m/c for
a reactor of size 16× 16. (b) Relative percentage error of ceff

for four reactor volumes V : 8×8, 16×16, 32×32, and 64×64.
For both panels c = d and ρK = ρP = 1/V .

approximations for EMRRCs:

ceff =

[
1

c
+

1

M̃
(ρK + ρP)w(ρK + ρP)

]−1
, (19a)

deff =

[
1

d
+

1

M̃
(ρK + ρP)w(ρK + ρP)

]−1
, (19b)

where, recall, w(ρ) is the average number of steps un-
til trapping a random walker in a system of randomly
distributed traps of concentration ρ.

C. Final formulas and their numerical verification

As shown in Appendix B, w(ρ) = w(1/V ), where V
is the volume of a reactor containing a single trap or a
trap-specific volume in a reactor with traps of concentra-
tion ρ, can be approximated by the following asymptotic
formula [33]:

w(1/V ) = αV log V + βV +O(1). (20)

For the triangular lattice and a square-shaped reactor
with periodic distribution of traps (or, equivalently, on
finite lattices of volume V = 1/ρ with periodic boundary
conditions containing a single trap) coefficients were cal-
culated by Montroll [33] and are as follows: α =

√
3/(2π),

β ≈ 0.235. When traps are distributed randomly, coef-
ficients α′ and β′ were estimated numerically. After as-
suming α′ = α we obtained a good fit for β′ = 1.00 (see
Appendix B).

One can use Eq. (20) with coefficients α, β to esti-
mate the effective reaction rate coefficients in idealized
systems which in volume V contain a single pair of an-
tagonistic enzyme molecules. In this case we return to
Eqs. (15) and, because in this case the substrate molecule
searches always for a single enzyme molecule (kinase or
phosphatase), we set w(ρK, ρP) = w(ρP, ρK) = w(1/V ).
In this way we obtain the following expressions for ceff
and deff:

ceff =

(
1

c
+
α log V + β

M̃

)−1
, (21a)

deff =

(
1

d
+
α log V + β

M̃

)−1
. (21b)

In Fig. 1, we study the fully symmetric case (c = d)
for a single pair of enzyme molecules and show that the
formulas in Eqs. (21) agree satisfactorily with results of
numerical simulations. In panel (a) we plot the depen-
dence of ceff on the speed of diffusion for an example
reactor of size 16× 16. In panel (b) we show the relative
error of our approximation for different sizes of the re-
actor, with always one kinase molecule, one phosphatase
molecule, and one substrate molecule present in the re-
actor. We observe that for reactors of size 16 × 16 or
larger the discrepancy between formulas in Eqs. (21) and
results of numerical simulations is lower than 2%.

To obtain the EMRRCs in the limit of large reactor
volume, with multiple enzyme molecules, we use our
estimates of w(ρ) = w(1/V ) in the case when traps
are randomly distributed (Appendix B). After setting
1/V = ρK + ρP from Eqs. (19) we obtain

ceff =

[
1

c
+

1

M̃

(
α′ log

1

ρK + ρP
+ β′

)]−1
, (22a)

deff =

[
1

d
+

1

M̃

(
α′ log

1

ρK + ρP
+ β′

)]−1
, (22b)

with α′ = α =
√

3/(2π), β′ = 1.00. The steady-state
concentrations of phosphorylated and unphosphorylated
substrate fractions are given by Eqs. (4).

In the next four figures we compare the EMRRCs given
by Eqs. (22) with numerical estimates. First, in Fig. 2,
we consider the fully symmetric case in which c = d and
ρK = ρP. For substrate density ρS 6 0.1 and enzyme
densities ρK, ρP 6 0.03 the relative error of ceff, (simula-
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FIG. 2. Comparison of analytical expressions in Eqs. (22) with numerical estimates in the fully symmetric case of c = d,
ρK = ρP. (a) Normalized effective phosphorylation rate coefficient ceff/c for ρK = ρP = 0.003 and substrate concentration
ρS = 0.01. (b)–(e) Relative error of ceff, i.e., (simulation value − analytical value)/analytical value, for seven values of
ρK = ρP ∈ {0.0001; 0.1}. The substrate concentrations are: ρS = 0.001 in panels (b) and (c), ρS = 0.01 in panel (d), and
ρS = 0.1 in panel (e). Simulations for panel (c) were performed on the 1000 × 1000 lattice while remaining simulations were
performed on 300 × 300 lattice. Please notice the difference between the relative errors of ceff for the lowest enzyme densities
(black dots) obtained in simulations performed on 300× 300 and 1000× 1000 lattices.

tion value − analytical value)/analytical value, remains
below 5% and decreases with the enzyme density. This
is visible in Fig. 2(c), for which simulations were per-
formed on the 1000× 1000 lattice. The remaining simu-
lations were performed (for technical limitations) on the
smaller 300× 300 lattice, for which at the lowest enzyme
concentration, ρK = ρP = 10−4, the number of kinases
(and phosphatases) is N = 9, and therefore the condition
N � 1 is not satisfied. The comparison of the results ob-
tained in the simulation performed on the 300× 300 and
1000 × 1000 lattices suggests that at least part of the
discrepancy between the theory and simulations is intro-
duced by the small size of the lattice.

In Fig. 3 we consider the case in which c = d, but

ρK 6= ρP. Let us notice that Eqs. (22) together with
Eqs. (4) imply that when c = d,

ρSp

ρS
=

ρK

ρK + ρP
. (23)

Figure 3(a) shows a perfect agreement, with error less
than 0.002, of Eq. (23) and the numerical estimate; Fig-
ure 3(b)–3(c) show that EMRRCs are predicted with the
accuracy of about 5%.

In Fig. 4 we consider asymmetric cases in which c =
10d (first column) or c = 100d (second column). In the
third column we show results for the fully asymmetric
case in which c = 100d and ρK = 0.1ρP. In this case,



8

(a)

−0.003

0

+0.003

10−310−210−1 1 10 102

E
rr

or
of

ρ S
p
/

ρ S

m/c

(b)

−5%

0

+5%

10−310−210−1 1 10 102

R
el

.e
rr

or
of

c e
ff

m/c

(c)

−5%

0

+5%

10−310−210−1 1 10 102

R
el

.e
rr

or
of

d e
ff

m/c

Notation in (a)–(c):

ρK = 0.001,
ρP = 0.003

ρK = 0.01,
ρP = 0.001

ρK = 0.01,
ρP = 0.003

FIG. 3. Comparison of analytical expressions in Eqs. (22) and Eq. (23) versus numerical estimates. (a) Error of ρSp/ρS. (b),
(c) Relative error of ceff and deff. Three pairs of ρK and ρP were assumed: ρK = 0.001, ρP = 0.003 (pink squares); ρK = 0.01,
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FIG. 4. Comparison of analytical expressions in Eqs. (22) and (4) versus numerical estimates. First row (panels (a)–(c)) shows
phosphorylated substrate fraction ρSp/ρS, second row (panels (d)–(f)) shows error of ρSp/ρS, i.e., (simulation value − analytical
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FIG. 5. Fraction of phosphorylated substrate ρSp/ρS as a
function of enzymes ratio ρK/ρE in the case when the phos-
phatase activity is 10 times higher than the kinase activ-
ity, d = 10c. Concentrations: ρE = ρK + ρP = 0.006 and
ρS = 0.01.

in the limit of infinite diffusion, i.e., when ceff = c and
deff = d, phosphorylation proceeds at the effective rate
∝ c× ρK that is ten times greater than the effective de-
phosphorylation rate ∝ d × ρP. Consequently, the frac-
tion of phosphorylated substrate is close to 0.9. In the op-
posite, diffusion-controlled limit, ceff ≈ deff and therefore
since phosphatase molecules are ten times more abun-
dant, dephosphorylation proceeds ten times faster than
phosphorylation, and as a result the phosphorylated sub-
strate fraction is close to 0.1. This example demonstrates
that the speed of diffusion can qualitatively influence the
steady state of the system.

Finally, in Fig. 5 we consider the case when the phos-
phatase activity is 10 times higher than the kinase activ-
ity, d = 10c, and calculate the fraction of the phospho-
rylated substrate as a function of enzymes ratio. Four
different motility values are considered. The results ob-
tained for m/c = 0.1 lie close to those for the zero-
diffusion limit, m/c → 0, for which ρSp/ρS = ρK/(ρK +
ρP); the results obtained for m/c = 100 lie close to those
for the limit of infinite diffusion, m/c → ∞, for which
ρSp/ρS = cρK/(cρK + dρP).

D. Comparison with the previous study

As mentioned in the Introduction, this study follows
our previous numerical study [3] in which the same re-
action scheme was considered under the assumption that
each lattice site can be occupied by no more than one
molecule, and that an enzyme molecule reacts with a
substrate molecule when located in adjacent lattice sites.
Here, in contrast, we assumed that enzyme and substrate
molecules are allowed to enter the same lattice site, and
have to be in the same lattice site in order to react. This
assumption substantially simplifies the problem and al-

lowed us to obtain the (approximate) analytical results.
Let us compare predictions of these two models. The

assumption in the former model [3] implies a larger in-
teraction radius and causes that there are on average six
times more enzyme–substrate pairs than in the current
model, thus in the infinite-diffusion limit the EMRRC
was equal c∞eff = 6c (not just c as in the current model).
Therefore, to compare the two models (Fig. 6), in the
simulations according to the former model we divide mi-
croscopic constants c and d by 6, and normalize ceff with
respect to c∞eff for both models. The increase of the reac-
tion radius caused that the effective distances between
enzymes shortened, which for finite motility increased
the EMRRCs with respect to the current model, Fig. 6
(a) and (b). Additionally, because of the larger reaction
radius the substrate molecules could have two antago-
nistic enzymes in their reaction volumes (consisting of
six neighboring sites). Substrates having (at least) two
antagonistic neighbors were sequentially phosphorylated
and dephosphorylated, which led to nonzero ceff in the
zero-motility limit. The zero-motility EMRRCs are sig-
nificant when the probability of having two antagonistic
enzymes is large, i.e. for dense systems, Fig. 6 (a). In re-
ality, however, the sequential substrate modifications by
the neighboring enzymes require the substrate molecule
to expose its modified residue to the antagonistic enzyme.
One can thus expect that in the case when both trans-
lational and rotational diffusion cease, the reactions are
suppressed and therefore the EMRRCs should converge
to zero in the limit of zero (translational and rotational)
diffusion (as implicated by the current model).

Fig. 6 (c) shows the discrepancy between steady-
state phosphorylated substrate fractions predicted by two
models, which arises when c 6= d (for c = d, both mod-
els predict that ρSp/ρS = ρK/(ρK + ρP) independently of
motility).

We expect that in the parameter region in which the
discrepancy between these two models is significant (i.e.,
for very small motility and high enzyme concentration),
the discrete lattice-based approach breaks, and the anal-
ysis should be based on the rigid body Brownian dynam-
ics. The simulations should account for refractory times
of enzyme molecules, ATP exchange kinetics, and for ori-
entation of substrate and enzyme molecules.

IV. CONCLUSIONS

We derived formulas for the diffusion-controlled effec-
tive macroscopic reaction rate coefficients in a cycle of
two reactions in which two antagonistic enzymes (here:
kinase and phosphatase) modify the state of a substrate.
Such cycles are ubiquitously utilized in biochemical sig-
nal transduction because they allow for rapid information
transmission: substrate molecules are reused instead of
being degraded and resynthesized.

We focused on two-dimensional reactors, which have
their own peculiarities and are substantially different
from three-dimensional reactors, but play an important
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et al. p

This
studyq

simul. Eq. (22)
ρK=ρP=0.03

ρK=ρP=0.003

Szymańska
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FIG. 6. Comparison of the current model with the model by Szymańska et al. [3] Solid lines present theoretical predictions
of the current model. (a) Normalized effective phosphorylation rate coefficient, ceff/c

∞
eff, in the fully symmetric case: c = d,

ρK = ρP with ρK equal 0.03 or 0.003. (b) Normalized effective phosphorylation rate coefficient, ceff/c
∞
eff, in the asymmetric

case c = 10d, with ρP = 0.03 and ρK equal 0.03 or 0.003. (c) Fraction of the phosphorylated substrate, ρSp/ρS, for c = 10d,
ρP = 0.03, and ρK equal 0.03, 0.01, or 0.003.

role in regulatory pathways. Initial stages of signal-
ing employ numerous types of membrane receptors that
transmit signals by means of phosphorylation (and some-
times other modifications) of membrane-bound compo-
nents. A large share of signal transduction takes place
on membranes of various intracellular organelles. Bio-
logical membranes are considered crowded environment
of relatively low diffusivity (at least an order of magni-
tude lower than in cytosol), and therefore reactions on
membranes are expected to be diffusion-controlled. Im-
portantly, effective diffusion coefficients of various sub-
strates can be modified by transient binding to buffering
proteins [35], by the presence of crowding molecules, or
through changes of viscoelastic properties of the mem-
brane.

In this study, biochemical reactions on two-
dimensional membranes are analyzed by means of Monte
Carlo kinetic model on the square-shaped, triangular lat-
tice. For this model, we propose a derivation in which the
EMRRCs are expressed as the average time, τu (or τp),
a substrate molecules spends between antagonistic reac-
tions. This time, in turn, is the sum of time to find the
antagonistic enzyme molecule, τu1

(or τp1
), and time to

react after the first encounter with the enzyme molecule,
τu2

(or τp2
). As the time τu2

(or τp2
) was found to be

simply τu2 = 1/(c ρK) (or τp2
= 1/(d ρP)), the main dif-

ficulty is in calculating time to find the antagonistic en-
zyme molecule, τu1 (or τp1

).
In solving this problem, we first noticed that phos-

phorylation and dephosphorylation reactions are corre-
lated in space and time. Intuitively, it is clear when one

enzyme, e.g., kinase, is much more abundant than the
other enzyme. Then one may expect that after phospho-
rylation the search for the phosphatase molecules starts
from one of the kinase molecules located in the vicin-
ity of the phosphatase molecule (which had previously
dephosphorylated the substrate molecule), rather than
from a random place with respect to the locations of
phosphatase molecules. As a result, τu1

(or τp1
) depends

on concentrations of both enzymes. After noticing this
fact, we estimated τu1

and τp1
using the formula of Mon-

troll [33], which gives the average number of steps before
trapping the random walker in a field of traps of con-
centration ρ. Coefficients of this formula were calculated
by Montroll [33] for the case of periodically distributed
traps; here, for the case of randomly distributed traps, we
assumed that the first, leading-order coefficient has the
same value as in the Montroll formula, and fit the value
of the second coefficient using the results of numerical
simulations.

The resulting macroscopic phosphorylation reaction
rate coefficient ceff has an intuitive form: it is half of
the harmonic average of the microscopic phosphorylation
rate constant, c, and the effective motility, M̃ , divided by
a slowly decreasing logarithmic function of enzyme con-
centration, ρE = ρK + ρP:

ceff =

(
1

c
+

1

M̃
f(ρE)

)−1
. (24)

In the case when c � M̃ , i.e., in the reaction-controlled
limit, we have ceff ≈ c, while in the opposite, diffusion-



11

controlled limit, c � M̃ , ceff ≈ M̃/f(ρE). In the last
limit the logarithmic dependence of ceff on enzyme con-
centration, f(ρE) ∝ log(1/ρE), follows from the fact that
the expected number of steps w(ρ) till trapping in a sys-
tem of randomly distributed traps with density ρ scales as
w(ρ) ∝ ρ−1 log(ρ−1) in the limit of ρ→ 0, when starting
from a random position. In our case, the search for a ki-
nase molecule starts after dephosphorylation, which takes
place in an approximately random position with respect
to the kinases. In the case when search starts from a site
neighboring a trap, the expected number of steps scales
as w̃(ρ) ∝ ρ−1. Therefore, for example, in the classic
reversible dimerization problem, an A molecule after the
A · B dimer dissociation needs on average w̃(ρB) = ρ−1B
steps to find the same or another B molecule. This con-
stitutes the main difference between reactions involving
two antagonistic enzymes and simple reversible reactions.

Equation (24) together with analogous equation for d
imply that when microscopic phosphorylation and de-
phosphorylation rate constants c and d differ, ceff and
deff scale differently with the motility. As a result, the
steady-state phosphorylated substrate fraction can de-
pend on the diffusivity. This is in contrast to single-
reaction processes such as the reversible dimerization re-

action A + B 
 A · B k

q
C (considered in Appendix C)

where the steady-state concentration of C does not de-
pend on the diffusion coefficient.

The derived EMRRCs and the steady-state value of
the phosphorylated substrate fraction agree with the nu-
merical estimates with reasonable accuracy. Based on
analytical considerations and results of numerical simu-
lations, we may conclude that in the range of parameters

m ∈ (0,∞), ρK ∈ (0, 0.03), ρP ∈ (0, 0.03), ρS ∈ (0, 0.1)
(25)

the analytical estimates of EMRRCs and the phosphory-
lated substrate fraction ρSp/ρS satisfy:

• for c = d: [EMRRC relative error] < 5% &
[ρSp/ρS] is exact;

• for c 6= d with c/d ∈ (0.01, 100): [EMRRC relative
error] < 20% & [ρSp/ρS error] < 0.05.

Still, one should be aware of limitations of the on-
lattice model, discussed in the last subsection of Results.
These limitations can render our approximation non-
satisfactory for dense systems characterized by a very
small diffusivity.

In summary, the proposed analysis is able to capture
the behavior of the system in which the steady state is
qualitatively controlled by diffusion. For low diffusiv-
ity, i.e., when reaction kinetics is diffusion-controlled, the
steady state is imposed by the more abundant enzyme,
while for high diffusivity, i.e., in the reaction-controlled
limit, it is imposed by the enzyme which has higher effec-
tive activity. More work and a more detailed description
is needed in the case of high concentration of enzymes
and membrane crowders that can maintain membrane
proteins close to the percolation threshold [36]. In this

limit, various subcellular environments exist on the verge
of the sol–gel transition [37], and one can expect the ex-
istence of localized, temporal abrupt changes of effective
diffusivity which can impact biochemical reaction kinet-
ics implicated in signal transduction [38].
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Appendix A: Effective motility

Here, we briefly summarize the influence of molecular
crowding on the effective motility, m̃. As discussed be-
fore [3], the effective motility of a molecule having motil-
ity m depends on both the concentration of crowding
molecules, ρC, and their motility, mC. By the crowding
molecules we understand those whose presence in a lat-
tice site prevents the considered molecule from moving
to that lattice site. The expression for m̃ reads:

m̃ = mf(ρC, g) (1− ρC), (A1)

where f is the correlation function that can be approxi-
mated by the following formula [34, 39]:

f(ρC, g) =
{[(1− g)(1− ρC)f0 + ρC]2 + 4g(1− ρC)f20 }1/2

2g(1− ρC)f0

− [(1− g)(1− ρC)f0 + ρC]

2g(1− ρC)f0
, (A2)

where

f0 = (1− a)/[1 + a(2g − 1)] (A3)

and g is the ratio of m/mC. The coefficient a used
in Eq. (A3) depends on the lattice type; for triangular
lattice (considered here) a = 0.282, for square lattice
a = 1 − 2/π and for honeycomb (or hexagonal) lattice
a = 1/2 [40]. Since we consider only the case when all
molecules have the same motility (g = 1), Eq. (A1) sim-
plifies to

m̃(m, ρC, 1) = m

√
ρ2C + 4(1− ρC)

(
1−a
1+a

)2
− ρC

2
(

1−a
1+a

) . (A4)

Recall that in the present model we assume that nei-
ther two enzyme molecules nor two substrate molecules
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can enter the same lattice site. This means that enzyme
as well as substrate molecules play the role of crowd-
ing agents only for themselves. Accordingly, m̃X for
X ∈ {S,K,P} is given by:

m̃X =

{
m̃(mX , ρS, 1) for X = S,
m̃(mX , ρK + ρP, 1) for X ∈ {K,P}. (A5)

Appendix B: Estimation of w(ρ)

Assuming that a walker has the same probability of
starting from any non-trapping site, Montroll [33] ob-
tained an analytical asymptotic formula for the average
number of steps of a random walker, for walks on lattices
with periodic distributions of traps, of concentration ρ,
or, equivalently, on finite lattices of volume V = 1/ρ with
periodic boundary conditions containing a single trap.
The approximate formula reads:

wP(1/V ) = αV log V + βV + γ +O(1/V ), (B1)

where α is constant for a particular lattice structure
(α = 1/π for square lattice, α =

√
3/(2π) for triangu-

lar lattice), whereas β and γ depend also on the shape of
the reactor. For a triangular lattice and a square-shaped
reactor their values are β ≈ 0.235 and γ ≈ −0.251. We
restricted ourselves to two first terms of the right-hand
side of Eq. (B1). As discussed by Montroll [33], the for-
mula in Eq. (B1) agrees almost perfectly (with the error
smaller than 0.1% for lattices of V ≥ 16) with exact val-
ues.

To obtain the EMRRCs for large lattices with multiple
enzyme molecules we need to estimate w(ρ) = w(1/V ) in
the case when traps are randomly distributed. Up to our
best knowledge, despite several theoretical, e.g. Ref. 41,
and numerical attempts, e.g. Refs. 42 and 43, this prob-
lem remains unsolved, i.e., precise estimates for w(ρ)
are not known [44]. Thus, we estimate w(ρ) in numer-
ical simulations (as described in Methods) and then fit
the formula analogous to that obtained by Montroll [33]
(cf. Eq. (2.16) in Ref. 41), i.e.,

wR(ρ) = α′ρ−1 log(ρ−1) + β′ρ−1, (B2)

assuming that α′ = α. Through fitting we obtained β′ =
1.00. Use of α′ and β′ which were fitted simultaneously
does not decrease the error.

We verified the accuracy of our approach by perform-
ing analogous simulations for periodic distribution of
traps, i.e., in the case when analytical results are known.
The small discrepancy between our numerical estimates
and the formula derived by Montroll [33] (Fig. 7) justifies
our numerical approach and suggests a reasonable accu-
racy of the fitted coefficient β′ when traps are distributed
randomly.
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FIG. 7. Average number of steps of a random walker before
trapping in periodically and randomly distributed traps. (a)
Numerical estimates of wR(ρ) (random traps) and wP(ρ) (pe-
riodic traps) versus best fit (with α′ = α =

√
3/(2π), with

fitted β = 1.00) or the Montroll formula [33] (α =
√
3/(2π)

and β = 0.235). (b) The relative error between numeri-
cal estimate and fit, (simulation − fit)/fit, and between nu-
merical estimate and Montroll formula, (simulation − Mon-
troll)/Montroll, see Ref. 33. The fit was obtained for trap
concentrations ρ ∈ [0.00003; 0.03], i.e., when the concentra-
tion of traps is low enough so the asymptotic formula can
hold but simultaneously the number of traps is not smaller
than 30.

Appendix C: Reversible dimerization problem

We consider the classical reversible dimerization reac-
tion A+B 
 A·B k


q
C, where A·B denotes the geminate

A,B pair that occupies a single lattice site, while C de-
notes A,B heterodimer. Let ρC denote concentration of
heterodimers and let ρA, ρB denote concentrations of A
and B molecules that are free or in a geminate pair. This
is ρA = ρAtot − ρC and ρB = ρBtot − ρC, where ρAtot and
ρBtot are the total concentrations of A and B molecules.

Since the molecules A and B are allowed to enter
the same site, their positions are independent. There-
fore, the geminate pair concentration will be given by
ρA·B = ρAρB . In the steady state, geminate pairs
A · B are in equilibrium with heterodimes C, i.e., 0 =
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dρC/dt = k ρA·B − q ρC , which implies

ρC =
k

q
ρA ρB. (C1)

This agrees with the classic formula obtained in the
Brownian dynamics model (see, e.g., Ref. 21). The for-
mula implies that steady state concentrations are inde-
pendent of diffusion, which is in contrast to the more
complex reaction scheme studied in this paper. We use
this classic formula to check the accuracy of our nu-
merical approach. In Fig. 8 we numerically calculate
q ρC/(k ρA ρB) as a function of motility, showing that the
error introduced by our numerical scheme is comparable
to the statistical error of order of 1% for scaled motilities:
m/k ∈ (0.01, 100).

0.95

1

1.05

10−2 10−1 1 10 102

qρC

k ρA ρB

m/k

q = k
q = k/10

q = k
q = k/10ρAtot =0.001,ρBtot =0.1

{

ρAtot =ρBtot =0.01
{

FIG. 8. Reversible dimerization problem: comparison of
the numerically calculated steady-state concentrations with
the analytical expression, Eq. (C1). Value of the expression
q ρC/(k ρA ρB) is plotted as a function of scaled motility, m/k.
Four combinations of parameters ρAtot , ρBtot , k and q are con-
sidered.
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