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Abstract

The stochastic dynamics of T cell receptor (TCR) signaling are studied using a mathematical
model intended to capture kinetic proofreading (sensitivity to ligand-receptor binding kinetics) and
negative and positive feedback regulation mediated respectively by the phosphatase SHP1 and the
MAP kinase ERK. The model incorporates protein-protein interactions involved in initiating TCR-
mediated cellular responses and reproduces several experimental observations about the behavior of
TCR signaling, including robust responses to as few as a handful of ligands (agonist peptide-MHC
complexes on an antigen-presenting cell), distinct responses to ligands that bind TCR with different
lifetimes, and antagonism. Analysis of the model indicates that TCR signaling dynamics are marked
by significant stochastic fluctuations and bistability, which is caused by the competition between the
positive and negative feedbacks. Stochastic fluctuations are such that single-cell trajectories differ
qualitatively from the trajectory predicted in the deterministic approximation of the dynamics.
Because of bistability, the average of single-cell trajectories differs markedly from the deterministic
trajectory. Bistability combined with stochastic fluctuations allows for switch-like responses to
signals, which may aid T cells in making committed cell-fate decisions.

Keywords: T cell activation, mathematical model, kinetic proofreading, hysteresis, ordinary differ-
ential equations, stochastic simulations

1 Introduction

Activation of T lymphocytes, or T cells, is not only sensitive to small amounts of peptide antigen
but also selective, with exquisite discrimination between foreign peptides, which must be recognized
for immune defense, and self peptides, which must be ignored to avoid autoimmunity. Antigen
recognition begins with interaction of the T cell receptor (TCR), its co-receptor (CD4 or CD8),
and major histocompatibility complex (pMHC) molecules presenting peptide antigen on the surface
of an antigen-presenting cell (APC). Helper T cells, which express CD4, can be activated by as
few as 10 agonist (stimulatory) pMHC present on an APC, and even the presence of a single
agonist pMHC produces a measurable transient response (Irvine et al., 2002). Killer T cells, which
express CD8, are more sensitive; only three pMHCs are required to induce T cell-mediated killing
(Purbhoo et al., 2004). At the same time T cells ignore pMHCs with short binding lifetimes, which
are typically much less than a second for self peptides. Only peptides having binding lifetimes
greater than 5 s are activating and small differences in binding have disproportionately large effects
on T cell responses (Kersh et al., 1999).

To explain how T cells are able to discriminate between self and foreign peptide ligands of the
TCR, McKeithan (1995) introduced the concept of kinetic proofreading, demonstrating using a
simple model that a signal or cellular response can be highly sensitive to the lifetime of a ligand-
receptor bond. According to the model, sensitivity to ligand-receptor binding kinetics arises if a
response depends on a cascade of receptor modifications, the completion of which requires continued
ligand-receptor engagement. The fraction of receptors able to complete such a cascade, which
is assumed to comprise a series of tyrosine phosphorylation events, depends nonlinearly on the
duration of ligand-receptor binding, which is consistent with observations that the potency of a
ligand tends to correlate with its strength of binding and that stimulatory and non-stimulatory
ligands may have only small differences in binding strength (Davis et al., 1998; Germain and
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Štefanová, 1999). Since the seminal work of McKeithan (1995), the kinetic proofreading concept
has been explored and extended in many ways (for reviews, see Goldstein et al., 2004; 2008; George
et al., 2005; Burroughs and Anton van der Merwe, 2007). For example, Burroughs et al. (2006)
have recently studied a model in which spatial segregation of kinase and phosphatase activities
contributes to TCR signaling. It is now clear that the original kinetic proofreading model is unable
to explain all aspects of ligand discrimination by the TCR, including the phenomenon of antagonism
(Evavold et al., 1994). Antagonism occurs when a non-stimulatory ligand inhibits T cell activation
signals that are generated by an agonist ligand. Several attempts have been made to develop a
mathematical model of TCR signaling that accounts for antagonism.

To explain antagonism, Rabinowitz et al. (1996) extended the kinetic proofreading model
to include negative feedback at an intermediate stage of the receptor modification cascade and
positive feedback at the end of the cascade. The model predicts that rapidly dissociating ligands
will produce no signals, slowly dissociating ligands will produce amplified positive signals for T
cell activation, and ligands with intermediate binding kinetics will produce negative signals, which
can inhibit positive signals. Chan et al. (2001) also considered a model with negative and positive
feedbacks. Subsequent experimental studies have elucidated molecular mechanisms that generate
competing negative and positive feedbacks (Stefanová et al., 2003). These studies suggest that the
protein tyrosine kinase Lck, which associates constitutively with the TCR co-receptors CD4 or CD8
and phosphorylates TCR, plays a central role in feedback regulation. By activating the protein
tyrosine phosphatase SHP1, its own inhibitor, Lck triggers negative feedback. Positive feedback
occurs when, as a result of Lck-mediated membrane-proximal signaling events, the MAP kinase
ERK becomes activated and phosphorylates S59 in Lck, which prevents SHP1-mediated inhibition
of Lck activity.

Altan-Bonnet and Germain (2005) formulated a mathematical model for TCR signaling that
explicitly incorporates SHP1-mediated negative feedback and ERK-mediated positive feedback.
Wylie et al. (2007) considered the same feedback mechanisms in another model, which also considers
the role of co-receptor (CD4) and self peptide ligands in T cell activation. Neither of these models,
each of which includes large numbers of chemical species and reactions, was rigorously analyzed
to determine how stochastic fluctuations in population sizes might be influencing T cell signaling.
We can expect these fluctuations to be significant in physiological situations as T cells respond to
small numbers of agonist ligands.

Here, to investigate the role of stochastic fluctuations in TCR signaling, we develop and analyze
a model that extends the models of McKeithan (1995) and Rabinowitz et al. (1996) to incorporate
feedback mechanisms considered by Altan-Bonnet and Germain (2005) and Wylie et al. (2007). In
the model, we associate particular molecular events with proofreading and feedback steps. How-
ever, to keep the model relatively simple and to ease its analysis, we make various assumptions
about molecular events that limit the numbers of chemical species and reactions considered in the
model, which can be a cause for concern. However, the model incorporates more molecular details
than the model of Artyomov et al. (2007), who also studied the role of stochastic fluctuations in
TCR signaling, and we find that our model is able to reproduce many of the behaviors that are
characteristic of TCR signaling. We also find that the model exhibits bistability, which allows for
committed switch-like cellular responses to noisy signals.
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2 Model formulation

The model is illustrated in Figs. 1 and 2. Figure 1 provides a sketch of the model, indicating that
it includes a number of kinetic proofreading steps that are associated with particular binding and
phosphorylation events at or on a receptor. It also shows the steps at which negative and positive
feedbacks originate and act. Figure 2 provides a more complete picture of the 37 chemical species
and 97 reactions included in the model.

In the model, mainly as a simplification, we take TCR signaling in the context of a cell-cell inter-
face between a T cell and an APC to be triggered by monovalent receptor binding to peptide-MHC
ligand, which is consistent with some results that have been reported in the literature (for example,
see Ma et al., 2008). However, we note that the mechanism of TCR triggering is controversial
and other mechanisms, such as the pseudodimer model in which co-receptors play an important
role, have been proposed (Krogsgaard et al., 2007; Choudhuri and van der Merwe, 2007). We
will use ”MHC1” to refer to an agonist ligand, ”MHC2” to refer to either an antogonist ligand
or endogenous peptide, and ”MHC” to refer to MHC1 and/or MHC2. Next, Lck binds to the
cytoplasmic side of the receptor, which is enabled by ligand binding. We will use ”LCK” to refer
to unphosphorylated Lck. After association with TCR, LCK is autophosphorylated at Y394 in the
activation loop, which increases its catalytic activity (Veillette et al., 1989; Veilette and Fournel
1990; Yamaguchi and Hendrickson, 1996). Autophosphorylation allows Lck to activate negative
and positive feedbacks as described below. Presumably, Lck autophosphorylation is mediated in
trans by the pool of Lck constitutively associated with CD4 or CD8 co-receptors. However, the
model does not explicitly incorporate co-receptors. We essentially assume that autophosphoryla-
tion occurs spontaneously in a first order process. We will use ”LCKy” to denote the tyrosine
phosphorylated form of Lck. At this step, negative feedback is initiated; LCKy activates SHP1,
which involves phosphorylation at residue Y564 (Lorenz et al., 1994; Štefanová et al., 2003). We
will use ”SHP” and ”pSHP” to refer to the unphosphorylated and phosphorylated forms of SHP1.
pSHP binds to TCR, where it dephosphorylates LCKy and prevents regeneration of LCKy (Chiang
and Sefton, 2001; Štefanová et al., 2003).

LCKy is responsible for phosphorylation of immmunoreceptor tyrosine-based activation motifs
(ITAMs) in TCR-associated cell-surface CD3 molecules. The TCR is associated with a heterodimer
of CD3δ and CD3ε chains, a heterodimer of CD3γ and CD3ε chains, and a homodimer of CD3ζ
chains (for a review of the structure of the TCR/CD3 complex, see Kuhns et al., 2006). The γ, δ, and
ε chains each contain a single cytoplasmic ITAM, whereas the ζ chain contains three cytoplasmic
ITAMs. The ζ chain ITAM contains two tyrosines that are substrates of Lck (Iwashima et al.
1994). As a simplification, we lump the six ITAMs of the two CD3ζ chains associated with a TCR
into a single effective ITAM, which can be singly or doubly tyrosine phosphorylated. We will use
”pTCR” and ”ppTCR” to denote TCRs containing singly and doubly phosphorylated ζ ITAMs,
respectively. We take ppTCR, but not pTCR, to be capable of recruiting and activating ZAP-70,
which is a member of the Syk-family of protein tyrosine kinases. ZAP-70 is capable of binding
doubly phosphorylated ITAMs through its two tandem Src homology 2 (SH2) domains, and much
like Lck, ZAP-70 is activated through autophosphorylation (Chan et al., 1994; Chu et al., 1998).
We assume that when ZAP-70 is associated with ppTCR, autophosphorylation occurs through a
process that is effectively spontaneous and first order. This assumption is valid if cytosolic ZAP-70
is much more abundant than TCRs containing two adjacent ζ chains with doubly phosphorylated
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ITAMs. We will use ”ZAP” to refer to the unphosphorylated from of ZAP-70 and ”pZAP” to refer
to the activated/phosphorylated form of ZAP-70. Finally, pZAP acts to initiate the MEK/ERK
kinase cascade, resulting in production of doubly-phosphorylated ERK, which we will denote using
”ppERK.” ppERK mediates positive feedback by phosphorylating LCK(y) at residue S59. The
serine phosphorylated form of Lck will be denoted ”LCKs.” LCKs is unable to phosphorylate SHP
and competes with pSHP for binding to the TCR (Štefanová et al., 2003). Additional details about
the model are provided in the Appendix.

The model structure (Figs. 1 and 2) ensures that the extent to which T cell activation proceeds
depends on the mean lifetime of the interaction between TCR and MHC, te = 1/d, where d is the
dissociation rate constant. Because we assume that LCK association with TCR follows binding
of TCR to MHC (Fig. 2), formation of LCKy requires that a TCR-MHC bond last long enough
for LCK to be recruited to TCR and then phosphorylated. Thus, formation of LCKy, which is
required for signaling, is not induced when te is small compared to the expected time required for
LCK recruitment and phosphorylation (e.g., te � 1 s). This dependence of LCKy production on
a serial cascade of events, which is interrupted and reversed immediately when TCR and MHC
dissociate (Fig. 2), provides a simple mechanism by which a T cell can ignore endogenous peptides.

The competition of negative and positive feedbacks in the model ensures sharp discrimination (in
te) between agonist and antagonist peptides. Antagonist peptides—those that bind long enough to
produce negative feedback through pSHP but not long enough to activate ERK (positive feedback)
and TCR—are inhibitory in the sense that stimulation by agonist ligands induces a weaker signal
when antagonist ligands are present than when they are not. Sensitivity to a small number of
agonist peptides results from strong amplification through the kinase cascade that activates ERK.
This situation is in contrast to the models of Li et al. (2004) and Wylie et al. (2007). In these
models, most signal amplification arises from a serial triggering mechanism that depends on low
phosphatase activity. The assumption of low phosphatase activity is possibly satisfied in stages of
TCR signaling after immunological synapse formation, but T cell killing does not require formation
of a stable immunological synapse (Purbhoo et al., 2004).

The model is taken to represent the signaling dynamics in a single T cell and the reactions
in the model are simulated as discrete events using the stochastic simulation method of Gillespie
(1977), which applies when species are populated by either small or large numbers of molecules
and provides information about stochastic fluctuations in population numbers. The parameter
values used in simulations are summarized in Table 1 of the Appendix. To assess the importance
of stochastic fluctuations and to investigate bistability, we also considered the dynamics in the
deterministic limit. To do so, we formulated a system of ordinary differential equations (ODEs)
corresponding to the reaction scheme illustrated in Fig. 2, and we solved these equations using
standard numerical methods. A listing of the ODEs used in deterministic simulations and more
details about simulation protocols are provided in the Appendix.

3 Results

3.1 Discrimination between agonist and antagonist peptides.

Cytotoxic T cells respond to as few as three agonist peptides, but ignore thousands of endogenous
peptides. Thus, the first expectation for a correct model is the ability to discriminate agonist from
endogenous or antagonist peptides. For the measure of cell activity we select the level of ppERK.
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We consider a cell to be transiently activated when ppERKmax/ERKtotal > 1/2. If in a given cell
ppERK(t)/ERKtotal > 1/2 for at least 2 hours we consider such a cell to be persistently activated.
Cells for which ppERKmax/ERKtotal < 1/10 are considered inactive. In Fig. 3 we show domains
of high, low and intermediate peak ERK activity in the (1/d, log(N)) parameter space, where d is
the dissociation rate constant and N is the number of peptides per cell.

Because the presented discrimination curves are based on deterministic simulations of the model,
they must be interpreted with caution. In Fig. 4 we compare ppERK(t)/ERKtotal profiles ob-
tained in deterministic versus stochastic simulations for the first 400 s after stimulation. As one
would expect, there is high heterogeneity in single cell ERK responses. However, typically in the
low ERK activity domain ppERKmax/ERKtotal < 1/5, whereas in the high ERK activity domain
ppERKmax/ERKtotal > 1/2. In addition in both low and intermediate ERK activity domains the
ERK activity is transient.

3.2 Cell activity due to small number of agonist peptides

As follows from the analysis presented in Fig. 4 to analyze the behavior of heterogenous population
responses one may not restrict oneself to the deterministic approximation but has to run many
single cell stochastic simulations to obtain reliable statistics. To determine the fraction of cells
transiently activated in response to simulation by a small number of agonist peptides, we performed
simulation runs consisting of 500 single-cell stochastic simulations. Six populations of cells were
stimulated for 6 min by, N1 = 1, 2, 3, 5, 10 or 30 agonist peptides with dissociation rate constant
d1 = 0.05/s, i.e., expected binding time of 20 s. In Fig. 5 we show histograms of peak ERK activity
(ppERKmax/ERKtotal) during stimulation for 6 min. As shown, most cells when stimulated by
single agonist peptide remain inactive (Fig. 5A), whereas three peptides are, for most cells, sufficient
for nearly full activation (Fig. 5C). A larger number of stimulating agonists makes the peak ERK
activity distribution more compact, with a slightly higher average. As we will see later, the main
difference between stimulation with 10, 30, 100 or 1000 peptides is in duration of ERK activity.

3.3 Antagonism

It is known that antagonist peptides (peptides with a binding time of a few seconds) not only
are unable to activate T cells, but also inhibit agonist peptide activation (Racioppi et al., 1996;
Jameson et al., 1993). According to our model this inhibition results from activation of negative
feedback mediated by pSHP rather than competition for receptors or other signaling molecules.
As a result 3000 antagonist peptides (i.e., 10 times less than the total number of receptors) with
a binding time of 3 s could almost completely inhibit T cell activation. As shown in Fig. 6A
the optimal antagonist dissociation rate constant (d2 = dopt), i.e., the one giving the strongest
inhibition, is of order of 3 s. Peptides with dissociation rate constants larger than this seldom
remain bound long enough to induce negative feedback. In contrast those with dissociation rate
constant smaller than dopt remain bound sufficiently long to induce also the positive feedback, and
are thus stimulatory. Panels B–E in Fig. 6 show time-dependent ERK activity in individual cells
costimulated by 100 agonist peptides and 0, 300, 1000 or 3000 antagonist peptides having a binding
time of 3 s. This study shows that in the presence of 1000 antagonists T cell activity is highly
stochastic and transient.
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3.4 Bistability, deterministic versus stochastic trajectories

The presence of negative and positive feedbacks produces bistability in the deterministic equations
over a wide range of parameters. As shown in a bifurcation diagram (Fig. 7A) for each of three
dissociation rate constants considered, there are two saddle-node bifurcation points in Nmin(d)
and Nmax(d). Between these points the system possesses two stable solutions, one corresponding to
inactive cells (ppERK/ERK < 1/10), the other corresponding to active cells (ppERK/ERK > 1/2).
If the number of activating peptides N is smaller than Nmin then only the lower stable state exists,
whereas for N > Nmax only the higher stable state exists. The bistability lessens the ambiguity of
cellular responses because the system may more rapidly proceed from an inactive to active state as
the number of activating peptides grows.

The asymptotic behavior of trajectories calculated in the deterministic approximation is deter-
mined by the initial condition. For example let us consider the case of stimulation with N1 = 30
agonist peptides per cell characterized by dissociation rate constant d1 = 0.05/s. If initially a T
cell is in a primed state—a state without a history of prior peptide stimulation and characterized
by a low level of ppERK (mediating positive feedback) and low level of pSHP (mediating negative
feedback)—it will converge to the active state of high ppERK (Fig. 7B, black line). However, if
initially a T cell is in an inhibited state characterized by a high level of inhibitory pSHP (50, 000
molecules) it will remain inactive with a low asymptotic level of ppERK (Fig. 7C, black line).

The picture changes dramatically when we consider single-cell stochastic trajectories. Due to
the small number of reacting molecules (peptides) we should expect that these trajectories are
substantially different from the trajectories calculated in the deterministic approximation. The
quite common expectation is however that the deterministic trajectory is a good approximation of
the average over many stochastic trajectories. In the case of bistable systems this expectation is
not met. As shown in Figs. 7B and 7C the long time average over stochastic trajectories is not
determined by the initial condition, as in the case of deterministic trajectories. This result is due to
the fact that stochastic trajectories can jump between regions of attraction of the two stable steady
states. In the case shown in Figs. 7B and 7C the lower steady state is more attractive than the
higher one, and the trajectories remain for large t mostly in its basin of attraction. As a result the
average over stochastic trajectories in Fig. 7B is much different from the deterministic trajectory
converging to the higher steady state.

The approximation of the average stochastic trajectory by the deterministic one is inadequate
mostly due to bistability of the system not the large magnitude of noise. As shown in Figs. 8A
and 8C when the deterministic system is monostable the asymptotic behavior of the deterministic
trajectory approximates the stochastic average. This result contrasts with the bistable cases shown
in Figs. 7B and 8B, in which the number of activating peptides is, respectively, 30 and 100.

It should be noted that our analysis of system dynamics in terms of steady states is strictly
valid only under the assumption that our model accounts comprehensively for signaling events
that occur over the time course required to reach a steady state. The model has been formulated
to capture early membrane-proximal events in TCR signaling. Because the model omits later
events, such as immunological synapse formation (Bromey et al. 2001; Lee et al. 2002) and TCR
mediated internalization of peptide-MHC (Huang et al. 1999), the physiological relevance of model
predictions becomes more uncertain as the time required to reach a steady state increases. However,
steady-state results do reveal the long-time behavior of the system in isolation from downstream
events, and they provide a starting point for future studies of the effects of these downstream events.
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3.5 Sensitivity to total LCK, SHP and ERK levels

Since Lck is a necessary constituent of an active receptor complex, it is a natural expectation that a
lowered total amount of Lck will result in attenuation of T cell activity. This conjecture is true when
the number of activating peptides is low (Fig. 9A). However, for a high number of agonist peptides,
total Lck level may decrease even 1000 fold without a substantial decrease in ERK activity (Fig.
9B). Moreover, ERK phosphorylation can proceed faster when the total number of Lck molecules
is small (cf. the cases involving 103 and 105 copies of Lck in Fig. 9B). This particular behavior
results from the fact that Lck mediates both positive and negative feedback. In the case where
the number of stimulatory peptides is high, the higher total amount of Lck implies substantially
stronger negative feedback, but not a much stronger positive one, which quickly reaches saturation.

The phosphatase SHP1 mediates negative feedback and its total amount controls the strength
of T cell responses (Fig. 10). A lowered total level of SHP1 results in substantially elevated ERK
activity when a T cell is stimulated by peptides with a relatively short binding time (Fig. 10A). This
effect can potentially be used by a T cell during maturation to calibrate discrimination potency.
The analysis shown in Fig. 10A shows also that a lowered SHP1 concentration following formation
of a mature synapse may allow for persistent T cell activity. As one would expect T cell sensitivity
to total SHP1 level is less pronounced when the number of stimulatory peptides is low (Fig. 10B).

A lowered level of total ERK results in attenuated T cell activity (Fig. 11). The effect is more
pronounced for a high, rather than for a low number of activating peptides (compare Fig. 11B
versus 11A). This result is due to the fact that the positive action of ERK kinase proceeds through
inhibition of the negative feedback mediated by pSHP. When the number of activating peptides
is low, the negative feedback is weaker and may be overcome even by a small number of ppERK
molecules.

4 Discussion

The current model extends the kinetic proofreading model introduced by McKeithan (1995), with
incorporation of positive and negative feedbacks as proposed by Rabinowitz et al. (1996) and
then investigated recently by Altan-Bonnet and Germain (2005) and Wylie et al. (2007). The
model here is substantially simpler than the last two models (as measured by numbers of species
and reactions included), but it is nevertheless useful in that it demonstrates how bistability allows
for committed decisions in the face of noisy signals. Its simplicity aids in analysis, facilitating
stochastic simulations that demonstrate qualitatively different kinetics than the kinetics predicted
in the deterministic approximation. Bistability in TCR signaling was also studied by Zheng et al.
(2005) using a different model in which the number of activated TCRs is taken as the input, and
the positive feedback is mediated not by ERK but by ZAP-70. We caution that some behavioral
properties of our model are built into its structure. Ideally a model would be built only on our
mechanistic knowledge of signal transduction and then its behavioral properties, such as ligand
discrimination, would emerge. However developing such a model is a challenging task and none of
the current models reach this ideal.

The model exhibits three important properties for T cell activation: high sensitivity, ability
to discriminate between agonist and self peptides, and antagonism — inhibition of cell activity in
the presence of antagonist peptides. As shown in Fig. 5, three agonist peptides (with an expected
binding time of 20 s) are in most cases sufficient to trigger massive ERK activation. The ability to
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discriminate peptides based on their expected binding time is documented in Figs. 3 and 4 where
we showed that 106 peptides with an expected binding time of 3 s may not trigger cell activity,
whereas the presence of 10 peptides with an expected binding time of 14 s results in high ERK
activity. In Fig. 6 we showed that the presence of antagonist peptides (with a binding time of a
few seconds) inhibits T cell activation. This inhibition is due to activation of negative feedback by
the antagonist ligands, and not competition between agonists and antagonists for free receptors.

T cell sensitivity to MHC stimulation is controlled by the phosphatase SHP1 and kinase ERK,
which governs negative and positive feedbacks. A low total level of SHP1 results in higher T
cell sensitivity, whereas a lowered level of ERK causes lower T cell sensitivity. Both effects can
potentially be used during T cell maturation to calibrate discrimination potency. Since Lck mediates
both positive and negative feedback, the system response to a lowered total level of Lck is more
complex; when the number of activating peptides is small, low total Lck level implies low signal,
however at a high number of activating peptides, lower total Lck level causes a faster T cell response,
of unchanged strength. This somewhat paradoxical effect was observed by Methi et al. (2005), who
partially knocked down Lck using short interfering RNA and observed augmented T cell responses.

Since T cell activation is due to a small number of foreign peptides, T cell responses are highly
stochastic. This situation is similar to the case of NF-κB responses stimulated by low doses of
TNFα, where we showed that noise at the level of receptor activation causes single cell responses to
be much different from the average trajectory (Lipniacki et al., 2007). The stochasticity means that
cells do not follow their deterministic trajectories converging to a steady state, but may occasionally
jump between the basins of attraction of two possible states. For example, in the case of Fig. 7B,
stochastic noise causes a transition from a higher stable state to a lower one (corresponding to cell
inactivation), and then most cells are transiently trapped in the basin of attraction of the lower
steady state. As a result the average over a large number of stochastic trajectories is qualitatively
different from the deterministic trajectory, and the difference is caused by bistability rather than
the large magnitude of noise.

The interplay between negative and positive feedback causes bistability. As shown in Fig. 7,
for an intermediate number of activating peptides, the system has two stable steady states, one
with a low and the other with a high level of active ERK. The second state may be interpreted as a
cytotoxic state that allows killer T cells to initiate death of an antigen-presenting cell. Since killer
T cells decide the fate of scanned cells, their bistability provides a way to minimize ambiguity in
cell fate. Poorly defined T cell responses to signal could result in damage of the scanned cell, which
could possibly be worse than killing an innocent bystander cell. One can potentially observe the
interplay between bistability and stochasticity in experiments. Bistability of the system manifests
as sensitivity of a cell’s response to its initial state, whereas stochastic noise allows a cell to forget
its initial state. In Fig. 12 we showed that cells that are inhibited by antagonist pre-stimulation are
not responsive to subsequent agonist stimulation, whereas cells that are stimulated by a mixture of
agonist and antagonist peptides show strong ERK activation. This model prediction can perhaps
be used to test for the existence of bistability in TCR signaling experimentally.
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Appendix. Details of the model

Proteins and complexes

Each yi stands for the number of molecules (complexes) of a given species per T cell.

Membrane complexes

y1 – free MHC1 (agonist peptide – major histocompatibility complex )
y2 – TCR|MHC1
y3 – LCK|TCR|MHC1
y4 – LCKs|TCR|MHC1
y5 – LCKy|TCR|MHC1
y6 – LCKsy|TCR|MHC1
y7 – LCKy|pTCR|MHC1
y8 – LCKsy|pTCR|MHC1
y9 – LCKy|ppTCR|MHC1
y10 – LCKsy|ppTCR|MHC1

y11 – free MHC2 (antagonist or endogenous peptide – major histocompatibility complex)
y12 – TCR|MHC2
y13 – LCK|TCR|MHC2
y14 – LCKs|TCR|MHC2
y15 – LCKy|TCR|MHC2
y16 – LCKsy|TCR|MHC2
y17 – LCKy|pTCR|MHC2
y18 – LCKsy|pTCR|MHC2
y19 – LCKy|ppTCR|MHC2
y20 – LCKsy|ppTCR|MHC2

y21 – free TCR
y22 – pSHP|TCR
y23 – pSHP|TCR|MHC1
y24 – pSHP|LCK|TCR|MHC1
y25 – pSHP|TCR|MHC2
y26 – pSHP|LCK|TCR|MHC2

Cytosolic proteins
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y27 – LCK
y28 – SHP
y29 – pSHP
y30 – ZAP
y31 – pZAP
y32 – MEK
y33 – pMEK
y34 – ppMEK
y35 – ERK
y36 – pERK
y37 – ppERK

To keep our model as simple as possible we assumed that some processes, expected to be fast,
are immediate. This substantially reduces the numbers of chemical species and equations. For
example, we assume that MHC dissociation causes immediate dissociation and dephosphorylation
of LCK(s)(y) and dephosphorylation of p(p)TCR. This assumption means that a number of unsta-
ble intermediate complexes (i.e., LCK|TCR, LCKs|TCR, LCKy|TCR, LCKsy|TCR, LCKy|pTCR,
LCKsy|pTCR, LCKy|ppTCR, LCKsy|ppTCR, pSHP|LCK|TCR) are removed from the mathemat-
ical representation of the model. Similarly, we assume, that binding of pSHP to the TCR complex
results in immediate dephosphorylation of LCK(s)(y) and p(p)TCR, which further reduces the num-
ber of considered complexes such that there are no complexes containing pSHP and phosphorylated
forms of Lck or TCR in the model.

11



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

4.1 Parameters

Table 1. Parameters and definitions.

Symbol Values Units Description/Reaction Comments

N1 total number of MHC1 (bound + free) various N1 are considered

N2 total number of MHC2 (bound + free) various N2 are considered

TCR 3 × 104 total number of TCR molecules in all simulations

LCK 105 total number of Lck molecules except for Fig. 9

ZAP 105 total number of ZAP molecules in all simulations

MEK 105 total number of MEK molecules in all simulations

ERK 3 × 105 total number of ERK molecules except for Fig. 11

SHP 3 × 105 total number of SHP1 molecules except for Fig. 10

b1 0.3/TCR s−1 TCR + MHC1 → TCR|MHC1

b2 0.3/TCR s−1 TCR + MHC2 → TCR|MHC2

d1 s−1 MHC1 dissociation from any TCR complex various d1 are considered 1

d2 s−1 MHC2 dissociation from any TCR complex various d2 are considered 1

lb 0.3/LCK s−1 LCK +TCR|MHC → LCK|TCR|MHC

ly1 5/SHP s−1 pSHP binding to TCR complex 2

ly2 0.3 s−1 LCK(s)|TCR|MHC → LCKy(s)|TCR|MHC

ls1 0.1 s−1 LCK(y)s → LCK(y)

ls2 0.5/ERK s−1 ppERK + LCK(y)→ ppERK+LCK(y)s 3

s0 10−5 s−1 SHP → pSHP

s1 30/SHP s−1 LCKy + SHP → pSHP +LCKy,

s2 0.0006 s−1 pSHP → SHP 4

s3 0.05 s−1 pSHP dissociation from TCR complex

tp 0.05 s−1 LCKy(s)|TCR|MHC → LCKy(s)|pTCR|MHC

tp 0.05 s−1 LCKy(s)|pTCR|MHC → LCKy(s)|ppTCR|MHC

z0 2 × 10−6 s−1 ZAP → pZAP

z1 5/ZAP s−1 ppTCR + ZAP → ppTCR+pZAP

z2 0.02 s−1 pZAP → ZAP

m1 5/MEK s−1 pZAP+MEK → pZAP+pMEK

m1 5/MEK s−1 pZAP+pMEK → pZAP+ppMEK

m2 0.02 s−1 pMEK → MEK and ppMEK → pMEK

e1 5/ERK s−1 ppMEK+ERK → ppMEK+pERK

e1 5/ERK s−1 ppMEK+pERK → ppMEK+ppERK

e2 0.02 s−1 pERK → ERK and ppERK → pERK
1peptide-MHC dissociation from TCR complex results in immediate dephosphorylation and

dissociation of LCK(s)(y) and p(p)TCR dephosphorylation.
2pSHP may not bind to TCR complexes containing LCKs(y) because phosphorylation of S59

in LCK prevents pSHP binding. Binding of pSHP to the TCR complex results in immediate
dephosphorylation of LCKy and p(p)TCR.

3ppERK only interacts with LCK(y) associated with TCR complex in the absence of pSHP.
4pSHP dephosphorylation results in its immediate dissociation from TCR complex.
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Values of coefficients b1, b2, lb, ly1, ls2, s1, z1, m1, e1 are given based on numbers of cor-
responding molecules. For example e1 = (5/ERK)/s implies that each ppMEK molecule may
phosphorylate at most 5 ERK molecules per second. These coefficients are kept constant in all sim-
ulations including those presented in Figs. 9, 10 and 11, in which the dependence of cell activity
on the total amounts of Lck, SHP1 and ERK is studied.

4.2 Equations

dy1

dt
= d1 × (y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 + y23 + y24) − b1 × y21 × y1 (1)

dy2

dt
= b1 × y1 × y21 + (s2 + s3) × y23 − (d1 + lb × y27 + ly1 × y29) × y2 (2)

dy3

dt
= lb × y27 × y2 × ls1 × y4 + (s2 + s3) × y24 − (d1 + ly2 + ls2 × y37 + ly1 × y29) × y3 (3)

dy4

dt
= ls2 × y37 × y3 − (d1 + ly2 + ls1) × y4 (4)

dy5

dt
= ly2 × y3 + ls1 × y6 − (d1 + tp + ls2 × y37 + ly1 × y29) × y5 (5)

dy6

dt
= ly2 × y4 + ls2 × y37 × y5 − (d1 + tp + ls1) × y6 (6)

dy7

dt
= tp × y5 + ls1 × y8 − (d1 + tp + ls2 × y37 + ly1 × y29) × y7 (7)

dy8

dt
= tp × y6 + ls2 × y37 × y7 − (d1 + tp + ls1) × y8 (8)

dy9

dt
= tp × y7 + ls1 × y10 − (d1 + ls2 × y37 + ly1 × y29) × y9 (9)

dy10

dt
= tp × y8 + ls2 × y37 × y9 − (d1 + ls1) × y10 (10)

dy11

dt
= d2 × (y12 + y13 + y14 + y15 + y16 + y17 + y18 + y19 + y20 + y25 + y26) − b2 × y21 × y11 (11)

dy12

dt
= b2 × y11 × y21 + (s2 + s3) × y25 − (d2 + lb × y27 + ly1 × y29) × y12 (12)

dy13

dt
= lb × y27 × y12 + ls1 × y14 + (s2 + s3) × y26 − (d2 + ly2 + ls2 × y37 + ly1 × y29) × y13 (13)
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dy14

dt
= ls2 × y37 × y13 − (d2 + ly2 + ls1) × y14 (14)

dy15

dt
= ly2 × y13 + ls1 × y16 − (d2 + tp + ls2 × y37 + ly1 × y29) × y15 (15)

dy16

dt
= ly2 × y14 + ls2 × y37 × y15 − (d2 + tp + ls1) × y16 (16)

dy17

dt
= tp × y15 + ls1 × y18 − (d2 + tp + ls2 × y37 + ly1 × y29) × y17 (17)

dy18

dt
= tp × y16 + ls2 × y37 × y17 − (d2 + tp + ls1) × y18 (18)

dy19

dt
= tp × y17 + ls1 × y20 − (d2 + ls2 × y37 + ly1 × y29) × y19 (19)

dy20

dt
= tp × y18 + ls2 × y37 × y19 − (d2 + ls1) × y20 (20)

dy21

dt
= d1 × (y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10) +

d2 × (y12 + y13 + y14 + y15 + y16 + y17 + y18 + y19 + y20) +

(s2 + s3) × y22 − b1 × y1 × y21 − b2 × y11 × y21 − ly1 × y29 × y21 (21)

dy22

dt
= ly1 × y29 × y21 + d1 × (y23 + y24) + d2 × (y25 + y26) − (s2 + s3) × y22 (22)

dy23

dt
= ly1 × y29 × y2 − (s2 + s3 + d1) × y23 (23)

dy24

dt
= ly1 × y29 × (y3 + y5 + y7 + y9) − (s2 + s3 + d1) × y24 (24)

dy25

dt
= ly1 × y29 × y12 − (s2 + s3 + d2) × y25 (25)

dy26

dt
= ly1 × y29 × (y13 + y15 + y17 + y19) − (s2 + s3 + d2) × y26 (26)

dy27

dt
= d1 × (y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 + y24) +

d2 × (y13 + y14 + y15 + y16 + y17 + y18 + y19 + y20 + y26) −

lb × (y2 + y12) × y27 (27)
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dy28

dt
= s2 × (y29 + y22 + y23 + y24 + y25 + y26) − s1 × (y5 + y7 + y9) × y28 −

s1 × (y15 + y17 + y19) × y28 − s0 × y28 (28)

dy29

dt
= s1 × (y5 + y7 + y9) × y28 + s1 × (y15 + y17 + y19) × y28 +

s3 × (y22 + y23 + y24 + y25 + y26) + s0 × y28 − s2 × y29 −

ly1 × (y2 + y3 + y5 + y7 + y9 + y12 + y13 + y15 + y17 + y19 + y21) × y29 (29)

dy30

dt
= z2 × y31 − z1 × (y9 + y10 + y19 + y20) × y30 − z0 × y30 (30)

dy31

dt
= z1 × (y9 + y10 + y19 + y20) × y30 + z0 × y30 − z2 × y31 (31)

dy32

dt
= m2 × y33 − 2 × m1 × y31 × y32 (32)

dy33

dt
= 2 × m1 × y31 × y32 + 2 × m2 × y34 − m2 × y33 − m1 × y31 × y33 (33)

dy34

dt
= m1 × y31 × y33 − 2 × m2 × y34 (34)

dy35

dt
= e2 × y36 − 2 × e1 × y34 × y35 (35)

dy36

dt
= 2 × e1 × y34 × y35 + 2 × e2 × y37 − e2 × y36 − e1 × y34 × y36 (36)

dy37

dt
= e1 × y34 × y36 − 2 × e2 × y37 (37)

4.3 Numerical implementation and simulation protocols

Two kinds of numerical simulations were performed. In the deterministic approximation Eqs. (1)–
(37) were solved using the fourth order MATLAB solver. The stochastic simulations were performed
using the Gillespie (1977) algorithm. We also encoded the model in the BioNetGenTM language
(Faeder et al., 2005a; Blinov et al., 2006), which enables automatic building (and solution) of ODEs
based on specified reaction rules that serve as generators of chemical reactions. This formal model
specification can be used for future work as the BioNetGenTM software allows for simulations
of systems of thousands of reactions (Blinov et al., 2004; Faeder et al., 2005b). We found that
the stochastic simulations performed using BioNetGenTM are more than 10 times faster than in
MATLAB.
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The initial condition at t = 0 for both stochastic and deterministic simulations was obtained
by running a deterministic simulation (for 10 h) in the absence of any MHC (the only exception
was in simulations shown in Fig. 7C, where the initial condition was modified by setting pSHP
= 50, 000). Then, still without any MHC present the deterministic or stochastic simulations were
run from time t = 0 to time ti. Subsequently, at time ti the levels of free MHC1 and MHC2 were
set to the level specified in each figure, and then the simulation was run for the specified time ts.

Stable steady states, shown in Fig. 7A, were determined as asymptotic states of the determin-
istic simulations. In the case of bistability, to obtain both steady states, different initial conditions
were used; a high initial level of pSHP causes the system to converge to the steady state with low
ppERK, whereas high initial levels pZAP, ppMEK and ppERK cause the system to converge to
the steady state with high ppERK.
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Figure captions

Fig. 1. Overview of model. Discrimination between endogenous, antagonist and agonist peptides
results from kinetic proofreading and competition between negative (blue) and positive (red) feed-
backs. The majority of endogenous peptides dissociate before LCK phosphorylation occurs. Thus,
these peptides do no induce any negative or positive signals and are ignored by a T cell. Antagonist
peptides, on average, bind long enough such that LCK becomes phosphorylated, inducing nega-
tive feedback mediated by pSHP. Only agonist peptides bind long enough to fully activate TCR,
resulting in production of doubly phosphorylated ERK (ppERK), which attenuates the negative
feedback mediated by pSHP.
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Fig. 2. Full diagram of model. TCR signaling proceeds through a series of steps, including
TCR binding to peptide-MHC ligand, ligand-induced TCR binding to LCK, autophosphorylation
of LCK, and LCK-mediated phosphorylation of TCR. Phosphorylation of LCK results in SHP
phosphorylation/activation, binding of pSHP to the receptor complex, and dephosphorylation of
all complex components (negative feedback). Fully activated TCR, phosphorylates ZAP-70, which
subsequently mediates the phosphorylation of MEK, which in turn mediates the phosphorylation
of ERK. Activated ERK phosphorylates LCK(y) at S59, preventing interaction of (p)SHP and
LCKs(y), and thus blocking the negative feedback mediated by pSHP.

Fig. 3. Panel A: Domains of high (ppERKmax/ERKtotal > 1/2), low (ppERKmax/ERKtotal <
1/10) and intermediate (1/10 < ppERKmax/ERKtotal < 1/2) peak ERK activity in the (1/d, log(N))
parameter space, calculated based on deterministic simulations, d is the peptide-MHC dissociation
rate constant, and N is the number of peptide-MHC per cell. The colored dots indicate points at
which deterministic and stochastic simulations are compared in Fig. 4.

Fig. 4. ppERK(t)/ERKtotal calculated in deterministic (black-line) and stochastic (red, pink
and orange) simulations, for eight points in (1/d, log(N)) parameter space shown in Fig. 3. Panels
in upper, middle, and lower rows correspond, respectively to points from low, intermediate and
high ERK activity domains indicated in Fig. 3. Notice the different vertical scale for each row.
Peptide stimulation started at ti = 100 s (from the beginning of the numerical simulation) and
lasted for ts = 400 s.

Fig. 5. Histograms showing distribution of normalized peak ERK activity (ppERKmax/ERKtotal)
in a population of M = 500 cells stimulated by different numbers of agonist peptides with disso-
ciation rate constant d1 = 0.05/s. Panels A to F correspond to N1 = 1, 2, 3, 5, 10 or 30 peptides,
respectively. In all simulations peptide stimulation started ti = 100 s and lasted for ts = 400 s.

Fig. 6. Antagonism. Panel A: normalized peak ERK activity (ppERKmax/ERKtotal) for N1 =
100 (number of agonist peptides) and d1 = 0.05/s (agonist peptide dissociation rate constant)
as a function of 1/d2 (inverse antagonist peptide dissociation rate constant). The red, blue and
green lines correspond to N2 = 300, 1000, 3000 (number of antagonist peptides). Panels B
through E: normalized ppERK(t) calculated for N1 = 100, d1 = 0.05/s, d2 = 0.333/s and N2 = 0,
300, 1000, 3000, respectively. The black line is obtained from a deterministic simulation, whereas
the red, pink, and yellow lines are obtained from stochastic simulations. In all cases, peptide
stimulation started at ti = 0 s and lasted for ts = 2100 s.

Fig. 7. Panel A: Steady states for three different values of peptide dissociation rate constant
d = 0.1/s, 0.05/s, 0.0333/s. Stable steady states for ppERK are plotted as a function of log(N),
where N is the number of peptide-MHC per cell. The unstable states connecting saddle-node
bifurcation points are not shown. Panels B and C: ppERK(t) calculated in deterministic (black
line) and stochastic (red and pink lines) simulations, respectively for N1 = 30 and d1 = 0.05/s. In
Panel B, cells are initially in a primed state (low levels of ppERK and pSHP), whereas in Panel C
they are initially in an inhibited state characterized by a high level of pSHP (50 000 molecules).
The green line is the average over 100 stochastic simulations. In all cases the peptide stimulation
started ti = 10 min. and lasted for ts = 3 hour.
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Fig. 8. ppERK(t) calculated in deterministic (black line) and stochastic (red and pink lines)
simulations, for d1 = 0.05/s and, respectively for N1 = 5 (Panel A), N1 = 100 (Panel B) and
N1 = 1000 (Panel C). The green line is the average over 100 stochastic simulations. In all cases
cells are initially in a primed state (low levels of ppERK and pSHP). Peptide stimulation started
ti = 10 min. and lasted for ts = 3 hour.

Fig. 9. Dependence of normalized ERK activity (ppERKmax/ERKtotal) on the level of total Lck.
Panel A: Stochastic simulations for N1 = 10 (number of agonist peptides), d1 = 0.05/s (agonist
peptide dissociation rate constant) and three total Lck levels 105 (red), 104 (pink) and 103 (blue).
Panel B: Stochastic simulations for N1 = 10000, d1 = 0.05/s and four total Lck levels 105 (red),
104 (pink), 103 (blue) and 102 (green). In all cases peptide stimulation started at ti = 100 s and
lasted for ts = 400 s.

Fig. 10. Dependence of normalized ERK activity (ppERKmax/ERKtotal) on the level of total
SHP1. Panel A: Stochastic simulations for N1 = 100 (number of agonist peptides), d1 = 0.2/s
(agonist peptide dissociation rate constant) and three total SHP1 levels; 3 × 105 (red), 1.5 × 105

(pink) and 0.5×105 (blue). Panel B: stochastic simulations for N1 = 3, d1 = 0.05/s and three total
SHP1 levels 3 × 105 (red), 1.5 × 105 (pink) and 0.5 × 105 (blue). In all cases peptide stimulation
starts at ti = 100 s and lasted for ts = 400 s.

Fig. 11. Dependence of normalized ERK activity (ppERK(t)/ERKtotal) on the level of total
ERK. Panel A: Stochastic simulations for N1 = 10 (number of agonist peptides), d1 = 0.05/s
(agonist peptide dissociation rate constant) and three total ERK levels; 3 × 105 (red), 2 × 105

(pink) and 1 × 105 (blue). Panel B: Stochastic simulations for N1 = 10000, d1 = 0.1/s and three
total ERK levels 3×105(red), 2×105 (pink) and 1×105 (blue). In all cases the peptide stimulation
started at ti = 100 s and lasted for ts = 400 s

Fig. 12. Consequences of bistability. Left column: Cells are stimulated by a mixture of agonist
(N1 = 100, d1 = 0.05/s) and antagonist (N2 = 300, d2 = 0.333/s) peptides at time ts = 1000 s.
Right column: Cells are inhibited by antagonist (N2 = 300, d2 = 0.333/s) stimulation starting at
time ti = 0, and then at time ts = 1000 s agonist (N1 = 100, d1 = 0.05/s) peptides are added. One
deterministic (first row) and two stochastic simulations (second and third row) are shown. Notice
the different vertical scales for the left and right columns.
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