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Prediction of functionally important residues in
globular proteins from unusual central distances
of amino acids
Marek Kochańczyk1,2

Abstract

Background: Well-performing automated protein function recognition approaches usually comprise several
complementary techniques. Beside constructing better consensus, their predictive power can be improved by
either adding or refining independent modules that explore orthogonal features of proteins. In this work, we
demonstrated how the exploration of global atomic distributions can be used to indicate functionally important
residues.

Results: Using a set of carefully selected globular proteins, we parametrized continuous probability density
functions describing preferred central distances of individual protein atoms. Relative preferred burials were
estimated using mixture models of radial density functions dependent on the amino acid composition of a protein
under consideration. The unexpectedness of extraordinary locations of atoms was evaluated in the information-
theoretic manner and used directly for the identification of key amino acids. In the validation study, we tested
capabilities of a tool built upon our approach, called SurpResi, by searching for binding sites interacting with
ligands. The tool indicated multiple candidate sites achieving success rates comparable to several geometric
methods. We also showed that the unexpectedness is a property of regions involved in protein-protein
interactions, and thus can be used for the ranking of protein docking predictions. The computational approach
implemented in this work is freely available via a Web interface at http://www.bioinformatics.org/surpresi.

Conclusions: Probabilistic analysis of atomic central distances in globular proteins is capable of capturing distinct
orientational preferences of amino acids as resulting from different sizes, charges and hydrophobic characters of
their side chains. When idealized spatial preferences can be inferred from the sole amino acid composition of a
protein, residues located in hydrophobically unfavorable environments can be easily detected. Such residues turn
out to be often directly involved in binding ligands or interfacing with other proteins.

Background
The task of assigning a function to each new protein
structure resulting from high-throughput structural
genomics experiments requires reliable computational
annotation methods. Identified functionally important
amino acids can provide preliminary clues on the co-
evolution and molecular workings of proteins. Such
information is crucial for the site-directed mutational
engineering and de novo protein design. The integration
of knowledge of the locations of binding sites with

ligand screening or docking protocols improves initial
stages of the rational drug design [1]. Also, when puta-
tive residues responsible for the complex formation are
identified, protein-protein interaction interfaces can be
characterized in silico [2].
Currently, due to the availability of 3D data, the

exploration of properties embedded in the structure of
proteins prevails over the traditional motif recognition
and sequence comparison (that may turn out to be sur-
prisingly ambiguous [3]). For close homologs, the
knowledge-based approaches transfer functional annota-
tions from proteins with already known structure and
function [4-8]. Their average effectiveness is inherently
limited by the availability of solved and annotated
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structures, so more generic methods are still desirable.
Numerous pure geometry-based methods search locally
for clefts and pockets in the molecular surface by
employing computational geometry algorithms [9-16].
The spatial neighborhood of residues is used to charac-
terize local environments in methods that take into
account additional factors such as the flexibility of resi-
dues [17], electrostatic potential [18,19] or overall inter-
action energy [20], excess or deficiency of the
hydrophobicity [21], hydrophobic potential around a
protein [22] or a multitude of other, predominantly phy-
sicochemical, residue properties [23-27].
Interestingly, indications based on diverse descriptions

are usually not correlated [28]; nor can they be used for
the prediction of both protein-ligand and protein-pro-
tein interaction sites [29]. As a consequence, well-per-
forming present-day approaches use combinations of
complementary characteristics, for example the electro-
statics and geometric properties [30] or the geometry
and conservation [31-33]. Metaservers offer combina-
tions of several independent fully-fledged methods in
order to compensate for the shortcomings of some
methods with capabilities of others [34,35]. As the com-
positions of distinct binding site prediction methods
achieve better success rates than constituent techniques
applied solo, it is still valuable not only to provide fine-
tuned variations of heterogeneous approaches, but also
to search for assorted methods that could complement
existing ones by the exploration of specific orthogonal
features.
Contrary to the majority of approaches that character-

ize fragments of proteins locally and with a considerable
degree of detail, Brylinski et al. [21,36] showed that the
rough analysis of the global spatial distribution of amino
acids with respect to their hydrophobicity is capable of
localizing ligation sites. They did not follow usual
hydrophobicity quantifications such as the average sol-
vent-accessible surface area or number of contacts [37],
but rather measured the discrepancy between idealized
and observed hydrophobicity within the fuzzy oil drop
model [38], where the trivariate Gaussian distribution is
used to express the idealized protein hydrophobicity
(maximum value in the protein core, smoothly
approaching 0 about and beyond the perimeter). It
turned out that amino acids of high discrepancy (unex-
pectedly high hydrophobicity in relation to their periph-
eral position) often occur in function-related areas of
proteins.
This observation is fundamental to the current work,

where we devised and validated a method for the identi-
fication of function-related residues based on the prob-
abilistic description of atomic burials originating from
the conceptual framework of Gomes et al. [39]. We col-
lected necessary statistics from a selection of globular

proteins and, as opposed to the original application of
the framework, we used a radial probability density
function to describe preferred central distances of indi-
vidual atoms of types defined within amino acids. In
this view, proteins are treated as mixtures of amino
acids where restraints resulting from their covalent con-
nectivity are ignored (except for cysteines). Any devia-
tions from the spherical shape of the macromolecule,
intrinsic rigidness imposed by the presence of secondary
structures and local interactions are neglected: proteins
are treated as compact solid-like bodies of atoms, where
the isotropic hydrophobic segregation and packing are
considered to be the dominant driving forces conferring
spatial organization of residues [40-42].
The classic analysis of just several protein structures

suggested that the sole orientational preferences of side
chains can be a criterion for the hydrophobic or hydro-
philic character [43]. Therefore, although a multitude of
hydrophobicity scales or burial indices are available for
(whole) amino acids and many knowledge-based pair-
potentials are constructed for (united) residue side
chains [44], we decided to act on the per-atom rather
than per-residue basis in order to account for (radial)
orientational preferences of residues. The actual amino
acid composition of a protein influences its native struc-
ture topology [45,46], folding type [47,48] and interac-
tions [49]. In our statistical model, for a protein with a
known amino acid abundance we assume that the rela-
tive probabilities are directly proportional to the stoi-
chiometry. In our approach to the function prediction,
every heavy atom in every amino acid of the protein
considered has the measure of its unexpectedness esti-
mated with respect to all possible atom types in a given
point of space. The measure depends solely on the dis-
tance from the geometric center of the polymer. Typi-
cally, residues that place their atoms in the least
probable central distances appear to contribute to the
creation of ligand binding sites (including active sites of
enzymes) or protein-protein binding interfaces.

Methods
Extraction of a non-redundant set of globular proteins
We examined a total of 172 265 protein chains as
deposited in RCSB PDB [50] in January 2011 and
excluded structures of high asymmetry or in other
aspects irregular. Two geometric descriptors were used
discriminatively: asphericity, calculated as the normal-
ized sum of squared differences of the eigenvalues of
the gyration tensor (according to [51]), was required to
be smaller than 0.1 and compactness to be at least 0.5;
the latter value was calculated as the ratio of the solvent
accessible surface area of the (ideal) sphere of the
volume of a considered protein to its actual solvent
accessible surface area (this is a more intuitive inverse
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of the fraction introduced by Galzitskaya et al. [52]).
Chains of sequence lengths smaller than 100 amino
acids were excluded due to strong geometric constraints.
Proteins that fulfill all the aforementioned conditions are
denoted as globular in this paper.
Furthermore, it was required that every solved struc-

ture should contain no discontinuities, be determined
with an experimental method to a resolution better than
2 Å, contain only a single domain (according to both
SCOP [53] and CATH [54] classifications) and must not
create multi-chain complexes, even transiently (deter-
mined on the basis of biological units assemblies avail-
able from PDB). A total of 2953 proteins were extracted
for further considerations (1.71% of the whole PDB).
In the last step, in order to reduce sequence redun-

dancy, precomputed clustering results available from the
PDB, generated by the Cd-hit program [55] that
grouped sequences of at least 90% of sequence identity
in clusters, were used to select a single protein per every
cluster. Finally, the learning data set comprised 775
high-resolution single-domain globular chains (26.2% of
previously selected chains). The full list of PDB ids is
available in Additional file 1 Table S1.
Compactness and asphericity of proteins in the set

turned out to be only weakly interdependent (correla-
tion coefficient, CC, -0.14). Longer chains were charac-
terized by lower compactness (CC = -0.45) but not
necessarily higher asphericity (CC = -0.06). Distributions
and dependencies of geometric descriptors are presented
in the Additional file 2 Figure S1.

Probabilistic description of atomic burials
Geometric centers and radii of gyration were calculated
for every chain in the learning set. Distances to the geo-
metric center of a chain of every heavy atom, r, were
divided by the radius of gyration of the whole chain, rg,
enabling a uniform view of globular proteins of various
sizes [43]. Histograms of such normalized distances, R =
r/rg, were collected for every amino acid-dependent
atom type denoted by τ. Three types of cysteines were
considered separately: generic Cys (irrespective of the
presence or absence of SS bonding), Cys creating (intra-
chain) disulfide bridges (denoted CSS, nearly 40% of all
Cys) and Cys reduced and not involved in SS bridging
(CSH). A total of 170 histograms for different τ were
obtained.
A continuous “mass” function derived by Gomes et al.

[39] to describe burials of whole residues was consid-
ered for fitting. The original function expresses the
quadratic increase of the volume when moving away
from the core of a protein and sigmoidal decrease
(Fermi function) of the atomic density in the rim as
dependent on the normalized radius, R:

pα(R; τ ) =
Aτ R2

1 + exp(βτ (Rατ − µτ ))
. (1)

After applying the direct least-squares method for fit-
ting individual histograms, obtained fits yielded unsatis-
factory sums of the squared residuals (SSR) for atoms in
hydrophilic residues, where the expression overestimated
their propensity to occur in the protein core. To
account for this observation, the assumption of the
strictly quadratic increase was abandoned and an addi-
tional tunable parameter, gτ, was introduced while aτ

was set to 1 (see Additional file 3 Figure S2). The fol-
lowing form was finally used:

p(R; τ ) =
Aτ Rγτ

1 + exp(βτ (R − µτ ))
(2)

for fitting. Parameter Aτ provides normalization, μτ
principally determines location, bτ influences the width
of the distribution and gτ controls convexity of the left
ridge. The goodness-of-fit of distributions of the latter
form was better for 124 of 170 fits (in terms of SSR) in
comparison to the original distribution function with
variable a (Equation 1) and for 130 of 170 fits (F-test
with p-value < 0.000001) in comparison to the original
distribution function with a = 1.

Expected atomic burials in proteins
Densities of atoms are characterized globally in the envir-
onment of the protein itself in the common and reduced
coordinate space. Thus, assuming the lack of void spaces
inside, in a given point in space, located in the normal-
ized distance R from the geometric center of the protein,
one can estimate the expected chance of occurrence of
an atom τ by relating its probability, p(R; τ), to probabil-
ities of occurrences of all atoms, ΣτÎT p(R;τ), where T is
the complete set of 170 atomic types. As we consider
concrete protein species, probabilities depend effectively
on the number of atoms τ (equal to the number of amino
acids of a concrete type) present in the whole protein, n
(τ). Only their relative fractions are important so we can
use them directly for weighting in the expression similar
to the posterior distribution of component membership
in mixture models. The equation

p̄(R; τ ) =
n(τ )p(R; τ )∑

τ ′∈T n(τ ′)p(R; τ ′)
(3)

is used for the estimation of expected atomic central dis-
tances in proteins with known amino acid composition.
The variability of preferred atoms in a given point in space
is measured in bits as the entropy of expected burials:

S(R) = −
∑

τ∈T

p̄(R; τ )log2p̄(R; τ ). (4)
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Prediction of functionally important residues
In search of residues employed directly in performing
the function, we follow the crucial observation by Bry-
linski et al. [56] that irregularities in the global distribu-
tion of hydrophobicity often indicate function-related
areas. We follow this principle in our probabilistic
approach by searching for atoms of the relatively least
probable central distances, p̄(R; τ ). Residues with such
atoms are usually the hydrophobic amino acids exposed
to the solvent or hydrophilic amino acids located close
to the protein core. The unexpectedness of a central dis-
tance can be converted into a simple free energy-like
term by the following equation:

Unexpectedness(R; τ ) = −log2p̄(R; τ ), (5)

which gives estimates in bits.
Prediction of ligand binding sites
As for compact structures it holds that rg is roughly
proportional to (sequence length)1/3 [57] and as in the
task of binding sites recognition one is interested pri-
marily in non-buried residues on the surface, the area of
which is proportional to r2

g , as a rule of thumb,⌊
1
4 · (sequence length)2/3

⌋
residues containing the most

unexpected atoms are initially selected. (However,
assuming the general spatial character of the statistical
model, no additional factors such as estimates of solvent
accessibility are taken into account.) Selected residues
are weighted proportionally to the maximum value of
unexpectedness among values assigned to constituent
atoms and then clustered hierarchically using the pair-
wise average-linkage method. In search for ligand bind-
ing sites, the hierarchy of residues is partitioned into
clusters separated by more than 7 Å (average Euclidean
distance) that indicate (possibly multiple) putative sites.
Positions of cluster centroids are computed in a
weighted manner and located closer to the most unex-
pected atoms. Putative sites are ranked according to the
proximity of their predicted centroids to the geometric
center of the whole protein.
Prediction of protein-protein interfaces
Contrary to the development of the complete algorithm
for the prediction of binding sites of (small) ligands, we
do not attempt to create a new protein-protein docking
method but rather to provide a simple unexpectedness-
based scoring function for the ranking of docking pre-
dictions. Heavy atoms of one protein located within a
distance of 10 Å from the other have their unexpected-
ness calculated and a maximum value of unexpectedness
is found in this way for both macromolecules of a
docked assembly. A docking prediction is then scored
using the average of the highest values of unexpected-
ness in two interfaces.

Evaluation of predictions
The evaluation of the method based on the introduced
characteristics was performed separately for the task of
predicting binding sites of small ligands and for the pre-
diction of regions creating interfaces to other proteins.
In both cases, if a test data set allowed, predictions were
made for unbound structures; after the assignment, the
apo form was superimposed onto the holo form so that
intermolecular distances were measured between the
unbound structure and ligand/another macromolecule
as located in the structure of the complex.
For the prediction of ligand binding sites, a set of 48

pairs of unbound/bound structures and a set of 210
bound structures, which were already employed for the
benchmarking of other methods (LigSitecsc [32] and
IBIS [8]), were used for the comparison with already
measured success rates of the state of the art geometry-
based methods: SURFNET [9], PASS [10] and LigSite
[12]. The former set, further referred to as the LB48 test
set, includes 38 enzymes that cover 39 diverse enzymatic
activities according to the EC annotations from the Cat-
alytic Sites Atlas version 2.2.12 [58] and 10 proteins that
bind compounds in their non-active sites. The latter set,
referred to as the LB210 test set, enabled large-scale
benchmarking.
In order to juxtapose the results of our approach and

similar fuzzy oil drop-based method (FOD), which
assign prediction scores to clusters of atoms, with
pocket identification methods, which indicate geometric
centers of pockets located over the molecular surface,
we used MSMS [59] and projected coordinates of cen-
troids of putative binding sites onto the solvent-
excluded molecular surface. Then, in order to apply the
cut-off value of 4 Å used in pocket prediction bench-
marks, we displaced surface-projected coordinates by 1
Å in the direction of the vector normal to the surface
and 1 Å outwards from the geometric center of the pro-
tein. As the points do not always lie the space in the
pocket, additionally we used the cut-off of 6 Å. We
examined whether any atom of the ligand is located
within the cut-off distance and reported success rates
for the best ranked (Top 1) and 3 highest ranked (Top
3) candidate sites.
In order to show, preliminarily, that the unexpected-

ness is a property of protein-protein interfaces, we used
the latest and most extensive docking benchmark (ver-
sion 4.0) [60], further referred to as the PPI176 test set.
Residues of two macromolecules were considered as
interfacing if they were separated by at most 4 Å. In the
case of protein-protein binding interfaces, unexpected
residues are usually isolated, so we did not cluster them,
but rather reported the average unexpectedness in bind-
ing/non-binding protein regions.

Kochańczyk BMC Structural Biology 2011, 11:34
http://www.biomedcentral.com/1472-6807/11/34

Page 4 of 12



Eventually, the capability of appropriate ranking of
protein-protein docking predictions was compared to
that of one of the best performing docking algorithms,
ZDock [61], optionally amended with ZRank [62], and
two other methods, recent ASP-Dock [63] and older
FTDock [64]. The methods have their success rates
already measured over the complete protein docking
benchmark version 3.0 [65], so this set (referred to as
the PPI124 test set) was used to estimate the capacity of
our approach. The unexpectedness-based score assessed
54,000 docking poses of a decoy generated by ZDock
3.0 operating at the rotational scanning interval of 6°. A
successful prediction was defined as a docking solution
of ligand Ca RMSD < 10 Å.

Comparison with other characteristics
A direct evaluation of the current method was per-
formed in parallel with the fuzzy oil drop (FOD)
method [21] using the LB48 test set. The same cluster-
ing and ranking methods were used for residues with
the highest unexpectedness and for residues of the high-
est observed vs. theoretical hydrophobicity discrepancy,
%H̃ (FOD). For the detailed comparison with other
explorable characteristics, useful for the prediction of
(small) ligand binding sites, the evolutionary conserva-
tion scores were assigned to residues according to the
multiple-sequence alignment-based ConSurf-DB [66];
only residues of the highest conservation score (i.e. 9)
are indicated in this paper. Independently, the clusters
of ionisable residues with anomalous predicted titration
behaviour, identified with the finite difference Poisson-
Boltzmann-based technique, Thematics [25], were
included in the comparison.

Results
Orientational preferences of amino acids
Parameters of probability distribution functions given by
Equation 2, Aτ , μτ bτ and gτ, were determined indepen-
dently for every amino acid-dependent atom type, τ,
allowing to capture the specific radial orientational pro-
pensities of amino acids. The full list of 170 sets of para-
meters for atomic distribution functions derived from
the obtained learning set can be found in the Additional
file 4 Table S2. Since the structure of side chains allows
to single out the atom most distant from the Ca atom,
it is possible to capture and demonstrate preferred
orientations using a less redundant description. We
decided to evaluate unexpectedness of every atom uni-
formly motivated by the fact that among 83 distribu-
tions of all side chain heavy atom types as many as 58
were statistically significantly different than distributions
of relevant Ca atoms (Kolmogorov-Smirnov tests with
p-value < 0.000001; see Additional file 4 Table S2 for
details).

Resulting probability density functions have nonzero
skewness, so in order to portray synthetically the orien-
tational preferences, we use both differences between
mean values and between maxima of distributions of Ca

and distal atoms (Figure 1). The arrows can be inter-
preted as expressing global hydrophobic moments of
(amphiphilic) residues defined in the environment of the
protein itself (analogous to [67]). In this view, the two
amino acids of the most prominent opposite orienta-
tional preferences are Lys and Phe (Figure 2).
Although side chains determine the hydrophobic/

hydrophilic character of amino acids, they influence con-
siderably probabilities of spatial occurrence of (chemi-
cally equivalent across amino acid types) Ca atoms. In
the synthetic picture of atomic densities (Figure 1 and
Additional file 5 Figure S3), hydrophobic propensities of
amino acids in the body of a protein are modulated by
their sizes: broad distributions of Gly and Ala atoms are
shifted from those of other hydrophobic types; distribu-
tions of large amino acids, such as Trp or Arg, are less
dispersed around their maxima; the broad distribution of
His can be explained by diverse possible protonation
states and the ambivalent distribution of Tyr - by mixed
aromatic/polar character of its side chain.

 0.8  1  1.2 R 0.8  1  1.2 R

CSH: C
α
 → S

γ
F: C

α
 → C

ζ

I: C
α
 → C

δ1

W: C
α
 → C

ζ3

V: C
α
 → C

γ1,γ2

L: C
α
 → C

δ1,δ2

C: C
α
 → S

γ

M: C
α
 → C

ε
A: C

α
 → C

β
Y: C

α
 → O

η
H: C

α
 → C

ε1
CSS: C

α
 → S

γ
G: C

α
T: C

α
 → C

γ2
S: C

α
 → O

γ
P: C

α
 → C

γ
N: C

α
 → N

δ2
Q: C

α
 → N

ε2

R: C
α
 → N

η1,η2

D: C
α
 → O

δ1,δ2

E: C
α
 → O

ε1,ε2
K: C

α
 → N

ζ

Figure 1 Orientational preferences of amino acids in globular
proteins. Locations of mean and maximum values of probability
density functions for Ca and most distant side chain atoms for all
amino acids. Thick arrows connect means; thin arrows span
between maxima of distributions. All arrows point towards the most
distal atom in the side chain (except for Gly) according to the labels
on the left. The arrows that would be shorter than their heads are
replaced by squares.
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The analysis of the intriguing case of Cys reveals that,
although their orientation does not depend on the possi-
ble disulfide bonding, the non-bridging cysteines prevail
as the most buried residues, while those constituting
cystines occur more often on the protein surface (Figure
1; Additional file 6 Figure S4). Cysteines are relatively
frequently found in active sites [68]; supposedly, the
evolution may easily redefine the function of a protein
by tailoring the state of cysteines and adjusting their
positions [69].

Distribution of unexpectedness
The mean central reduced distances of distal site chain
atoms are in agreement with known hydrophobicity

scales, especially those empirical ones based on the sur-
face accessibility. Several theoretical and one experimen-
tal scale, along with similarities expressed in terms of
the correlation coefficient, are listed in Table 1.
The statistical model applied to globular proteins from

the learning set reveals a critical value of about 0.93 · rg,
where the average entropy, calculated according to the
Equation 4 and interpreted as the lack of preference for
particular atomic types, has the highest value (Figure 3).
The value marks clearly the hydrophobic-hydrophilic tran-
sition on the protein surface, usually covered by a patch-
work of hydrophobic and hydrophilic areas [70,71].
Although it was observed in larger proteins that the degree
of hydrophobicity is constant for R <0.7 [72], according to
the model the protein interior is not a volume of uniform
preferences, but rather it visibly exhibits a gradually
increasing preference for some apolar atomic types
(decreasing entropy) when moving towards the centroid.
Types of the most unexpected amino acids (i.e. amino

acids comprising most unexpected atoms) were deter-
mined in the LB48 test set and in the PPI176 test set sepa-
rately (Figure 4). In the former set, the additional
requirement of R <0.93 and in the latter the requirement
of R >0.93 were imposed, because several proteins in the
LB48 test set create complexes with other proteins and
proteins in the PPI176 test set contain ligand binding
pockets. According to the model, the most unexpected
residues lying within the radius of gyration are those
charged or ionizable, such as Glu, Asp, Lys and Arg,
which are known to play essential functional roles in the
enzymatic active sites. Amino acids with branching ali-
phatic side chains, Leu, Val and Ile, are properly assessed
as being rarely exposed to the solvent. Unfortunately,
broad distributions of central distances of His and Tyr
cause them to be hardly ever indicated as unexpected.
Also, due to the specific structural roles of Pro and Cys,
such residues tend to be rated as unexpected despite the
possible lack of any direct relation to the function.

Prediction of ligand binding sites
Clusters of unexpected residues turn out to be located
on the surface of proteins, very often inside clefts and
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Figure 2 Probability densities of Ca and of the most distal side
chain atom in Phe and Lys. The two amino acids exhibit the most
prominent (the largest separation of the means) and opposite
(centripetal, A, vs. centrifugal, B) orientational preferences.

Table 1 Correlations of mean values of distal side chain atom distributions to other characteristics
CC Description of the characteristics Reference

-0.984 Mean fractional area loss upon folding [88]

-0.974 Solvent accessibility based on self-information [16% accessibility] [89]

-0.971 Information value for accessibility [average fraction 35%] [90]

+0.961 Normalized eigenvector of the Sweet & Eisenberg scale [91]

-0.951 Mean combined polarity calculated from distributions of residues in proteins [92]

+0.897 Hydrophobicity coefficient in RP-HPLC [C4 with 0.1%TFA/MeCN/H2O] [93]

Similarities of 5 theoretical (top) and 1 experimental (bottom) single-value amino acid characteristics are expressed in terms of the correlation coefficient, CC. (For
Cys, the distribution of reduced Sg was used.)
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pockets, where ligand compounds are bound. Geometric
centroids of such clusters designate candidate ligand
binding sites with the success rate similar to that of the
fuzzy oil drop-based method in the LB48 test set and
only slightly worse in the LB210 test set (see Table 2).
For the cut-off value of 6 Å of the distance to a ligand,
considered as enabling the comparison, the performance
of both global hydrophobicity distribution-based strate-
gies is similar or even marginally better than that of
three state of the art methods, PASS, LIGSITE and
SURFNET, which distinguish clefts or cavities based
solely on the local geometry (Table 2).
The relations to other characteristics frequently

exploited for the localization of binding sites, viz., con-
servation and electrostatics, were examined for residues
in properly indicated Top 3 clusters (Table 3). There are
no clusters with active site residues displaying neither
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Figure 3 Entropy of expected reduced central distances in
globular proteins. The entropy, S(R), of p̄(R; τ ) was averaged
over all proteins from the learning set and is expressed in bits
(black line; gray band - standard deviation of the mean entropy;
dashed line - location of the maximum). “Twilight zones” mark
regions where the entropy was calculated using tails of
distributions.

 0

 0.1

 0.2

 0.3

E K D R Q N P C A S G T H M W Y F V I L

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y
 i
n
 t
h
e
 s

e
t

Amino acids of high unexpectedness

R < 0.93, ligand binding sites test set LB48
R > 0.93, protein interfaces test set PPI176

Figure 4 Relative frequencies of amino acids characterized by
high unexpectedness. Residues lying within 0.93 · rg in proteins
from a set used for the ligand binding site prediction and residues
of central distances greater than 0.93 · rg from a set used for the
protein-protein interface prediction are presented separately.

Table 2 Benchmarks of several ligand binding site
prediction methods

LB48 test set LB210 test set

Method Top 1 Top 3 Top 1 Top 3

PASS 60* 71* 54* 79*

LIGSITE 58* 75* 65* 85*

SURFNET 52* 75* 42* 56*

FOD 56 (71) 60 (81) 55 (68) 72 (83)

Unexpectedness 48 (69) 63 (83) 53 (65) 67 (80)

The comparison of ligand binding site prediction success rates of the current
approach (Unexpectedness), a global hydrophobicity-based method (FOD) and
several non-hybrid pocket-searching state of the art methods for 48 unbound
molecules from the LB48 test set. The cut-off distances are 4 Å and 6 Å
(success rates for the latter value are in parentheses). Results marked with
stars were reported in [32].

Table 3 Residues in correctly predicted 3 top-ranked
clusters
Structure Function Cluster

1ahc A (RNA) glycosidase R, E, E, Q
1bbs A proteinase D̈, D̈
1bya A O-glycosidase Ë, R, Ë, P
1cge A metalloproteinase Ë
1djb A hydrolase (b-lactamase) K, E
1hsi A protease (HIV-2 retropepsin) I (flaps)
1hxf H (serine) protease D̈
1ifb A fatty acid binding R̈, E
1ime A (inositol) phosphatase D̈, D̈, D̈
1krn A hydrolase (fibrinolysin) K̈
1l3f E proteolysin E
1nna A O-glycosidase K̈, Ë, R, Ë, Q
1npc A (metallo)protease E, E
1pdy A enolase K, R, Q
1psn A (acid) proteinase D̈, D̈
1pts A azobenzoic acid binding D
1qif A (acetylcholin)esterase Ë
1stn A (phosphodi)esterase R, D̈
1ypi A (triosephosphate) isomerase K, E
2cba A lyase (anhydrase) Ë, Ë
2ctb A hydrolase (carboxypeptidase) E
2fbp B (fructose bis)phosphatase K, Ë, D, D̈, Ë
2sil A hydrolase (neuraminidase) Ë, Q, Q, R̈, R̈
3app A (acid) proteinase D̈
3p2p A (carboxyl)esterase R, D
3ptn A hydrolase (tripsin) D
3tms A (methyl)transferase Ë, N, Q
5dfr A (folic acid) reductase D
8adh A dehydrogenase E, D̈
8rat A hydrolase (ribonuclease) K̈, Q
Residues are sorted in rows according to decreasing unexpectedness.
Residues of the highest evolutionary conservation scores according to the
ConSurf-DB [66] are underlined; residues indicated as functional by Thematics
[25] have overbars; bold residues are annotated as catalytic in the Catalytic
Sites Atlas (CSA) [58]. (Two chains of non-enzymatic functions are
unannotated in the CSA.)
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conservation nor the indicative anomalous ionisable
behavior - in fact, in most cases there is a significant
overlap between the unexpectedness and two other
attributes; in remaining cases the three features may be
seen as complementing one another (especially for resi-
dues that are nonionizable or bind with low specificity).
Among the proteins annotated with EC numbers in

the LB48 test set, 35 out of 38 enzymes have their active
sites recognized in Top 3 clusters (31/38 in Top 1).
Notwithstanding, out of 10 proteins that exhibit no
enzymatic activity and bind ligands in their non-active
sites, binding sites are properly recognized in only 5
cases, mainly because of their eccentric locations (see
Additional file 7 Table S3 for details).
The predictive power of our approach decreases mod-

erately for more aspherical proteins. The quality of clus-
ter rankings seems to be independent of the asphericity
(Figure 5).

Ranking of protein-protein docking results
The unexpectedness was employed to characterize the
protein-protein interfaces in the PPI176 test set, where
the majority of structures have the asphericity higher
than 0.1. Despite this difficulty, the median unexpected-
ness of interacting residues turns out to be clearly

higher than the median unexpectedness of all surfaces
residues (Figure 6). When a subset of more globular
proteins is examined, the difference is even more salient
(not shown).
Scoring of interfaces based on the unexpectedness

yields consistently better results than an analogous
FOD-based scoring for 100 top-ranked solutions (Figure
7). For 10 top-ranked docking solutions success rates of
our approach are nearly comparable to that of the
ZRank, indicating that our score can properly account
for desolvation and electrostatics-related properties used
(in addition to van der Waals interactions) by ZRank.

Comparison to the fuzzy oil drop model
Ranking clusters according to the most unexpected
atoms turned out to be less specific than the ordering
based on the FOD-based discrepancy between theoreti-
cal and empirical hydrophobicity, %H̃. Searching for the
reason of disadvantageous cluster rankings we found
that the FOD method not only quantifies the hydropho-
bicity discrepancy, but primarily indicates residues in
the proximity to the molecular centroid (Figure 8). Visi-
bly, the fuzzy oil drop model inadequately overestimates
the hydrophobicity in protein cores. The satisfactory
predictive capability and advantageous ranking of the
FOD-based method can be explained by the observation
that the distance to the centroid can be used autono-
mously for the detection of active sites and enzyme-
ligand interfaces [73]. In our probabilistic approach,
unexpectedness of atoms is virtually independent of
their central distances.

Availability
We developed a web server SurpResi for the prediction
of functionally important sites based on the unusual
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central distances of atoms. The input of SurpResi server
is a Protein Data Bank (PDB) file or user file in the PDB
format. The output is a downloadable PDB file where
the column of beta factors is replaced by the unexpect-
edness and the occupancy is replaced by the same value
normalized to the range [0,1] over all protein atoms. In
the header section, the file contains detailed information
about clustering and ranking of clusters. The web server
and source code are freely available at http://www.bioin-
formatics.org/surpresi.

Discussion
The presented approach quantifies polar and directional
propensities of amino acids using the partition in the
knowledge-based continuous gradient of hydrophobicity
generated by the protein itself. It yields a middle level of

description of hydrophobic preferences between (coarse-
grained) scales of hydrophobicity and (fine-grained) resi-
due-residue contact matrices, where more specific local
effects such as homophilic, counterion or phenyl rings
interactions can be expressed explicitly [74]. It has been
already demonstrated that reduced representations and
global geometric potentials are capable of a quantitative
description of protein-ligand binding sites [75,76].
The adopted view concentrates on the characterization

of proteins not assuming any specific chemical proper-
ties of ligands. Although based on a statistical model
parametrized assuming spherical shapes of proteins
(resembling the assumption behind the generalized Born
solvation model), the method works well for moderately
aspherical macromolecules, allowing for not only
descriptive but also predictive applications. We do not
incorporate into the identification method any addi-
tional features, such as the solvent accessible area or
evolutionary conservation; the direct distance to the
centroid was used only for the ranking in order to
enable fair comparison with the FOD method; our mea-
sure is assigned homogeneously and isotropically in the
whole protein volume, thus allowing for the examination
of the predictive potential of the sole unexpectedness.
Favorable outcomes of our approach, especially when

applied to enzymatic active sites, can be explained by
analyzing the consequences of the requirement of the
precise and resolute positioning of a ligand (as the pre-
requisite for chemical specificity), which can be best ful-
filled by the creation of a binding pocket [77]. The
burial of (still accessible) charged amino acids or the
exposure of (partially unburied) conjugated aromatic
ones, which are essential from the point of view of the
mechanisms of the catalytic reactions, are not commen-
surate with their general expected radial positions in the
bulk protein body. Frequently, despite their indented
locations, pocket residues cannot be predominantly apo-
lar as well, because of the need for the presence of
bound water molecules assisting the catalysis (involved
in, e.g., nucleophilic attack).
The most unexpected atoms are usually found in the

deep-set parts of the pockets. The atomic depth has
been found to be correlated with residue conservation
[78,79] (more conserved amino acids create more con-
tacts), which provides the explanation for the overlap
between the sets of unexpected and conserved residues.
It has been found, based on electrostatics, that func-
tional sites comprise the most destabilizing residues
[18]. Similarly, the unexpected amino acids are those
introducing a local hydrophobic mismatch, plausibly
counterbalanced by the formation of salt bridges and
hydrogen bonding. The relation of the unexpectedness
to the electrostatics is not, however, as simple as in the
case of the conservation: buried charged residues can be
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encountered occasionally. It has been also demonstrated
that electrostatic and hydrophobic interactions may
compete [80]. This interplay is important with respect
to the desolvation energy. The ease of desolvation is
strongly predictive of protein-binding interfaces [29] and
influences intricately ligand binding affinities [81]. As
the hydrophobic interactions are dominant at protein
interfaces [82], indicated scattered residues at the sur-
face likely coincide with the view of the small fraction
of hot-spots, which account for the majority of the bind-
ing energy [83].
Our approach yielded sets of parameters for every

atom in an amino acid of a given type that is similar to
the construction of a hydrophobicity scale, because the
amount of information needed to characterize a protein
is linearly proportional to the length of its sequence.
The introduction of information-theoretic interpretation
of hydrophobicity distributions may lead to valuable
insights [84]. One result of the meeting of hydrophobi-
city and information theory, especially noteworthy in
this context, supports our approach by demonstrating
improvements in contact potentials tailored to the com-
positional properties of the sequences of interest [85].
The “mixture model” used in Equation 3 may be

tuned via the expectation-maximization procedure to
better fit the idealized distribution of the mass in indivi-
dual proteins. However, we observed no improvement
in the performance of the predictions for tuned forms,
probably due to the already balanced composition of
hydrophobic and polar amino acids in proteins selected
by nature [86]. In this view, it would be interesting to
check whether sequences of disordered or unfoldable
structures give “mixture models” that deviate signifi-
cantly from compact atomic distributions. It seems to
be possible to apply the method from the smoothed sur-
face towards the protein interior to some depth, and in
this way cover proteins of more irregular shapes, conse-
quently surpassing the most severe limitation of the
approach. The attempt would require, however, the
inquiry into the structure of hydrophobic cores in elon-
gated or bent proteins.
The method is expected to be applicable for the func-

tional annotation of low resolution structures, e.g., those
resulting from mature homology modeling pipelines.
Crude estimates of unexpectedness may be advanta-
geous over computational geometry-based methods
requiring precise atomic coordinates of active sites,
where residues or even whole loops undergo significant
displacements, not obeying the classic lock-and-key
model [87].

Conclusion
We present an approach that captures orientational pro-
pensities of amino acids in globular proteins and offers

a balanced description of their hydrophobic preferences.
The description is created at the granularity of indivi-
dual (amino acid-dependent types of) atoms but does
not enumerate explicitly all possible interactions
between them.
The approach is useful for the construction of a gen-

eric method that quantifies the unexpectedness of
occurrences of individual atoms in a given distance
from the geometric center of a protein. It turns out that
the characteristics can be applied to the recognition of
binding sites of both small ligands (enzymatic active
sites) and other proteins (protein-protein interfaces).
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Table S1. PDB ids of 775 globular chains in the non-redundant learning set derived in this work.

1c3d A 1wka A 1kcq A 2p3k A 1d7p M 1gv8 A 2vw5 A 1czs A 1b1c A 1eur A 1ea5 A
1knb A 1t1i A 1thg A 1srv A 1gz7 A 1h49 A 2ri9 A 1m21 B 1myr A 1wdp A 2f6d A
1nxc A 1s95 A 2j75 B 1wcg B 1hxn A 1cge A 1kex A 1h10 A 1uuq A 1ug6 A 2v3r A
1ksc A 1h46 X 1jdw A 6cp4 A 1bn8 A 1h4p B 1xwt A 1ojj B 1eqc A 2fpv A 1xnc A
1t64 B 1r3r A 1enu A 1uqy A 1dim A 1edg A 1r87 A 2d5j A 1c3p A 2aba A 2d8l A
966c A 1f2j A 3eau A 1qjw B 1eyw A 2hu6 A 1xx2 A 1ocj A 1g01 A 1vfl A 1cem A
1jta A 1rgy A 1ke4 B 1idk A 1w3h B 1qcx A 1h6l A 1xkn A 1qaz A 1a4m A 1pw8 A
1w0h A 1chd A 1ezw A 1fhw A 1xyz B 1lqa B 2o0m A 1qnp A 1y65 A 1onr B 1r66 A
1xfk A 1j8t A 1fob A 1gxm B 1hjs A 1qjf A 1n82 B 1ry8 A 1rhc A 1g7f A 2d2j A
1jk7 A 1o3y A 1vbr B 2ghs A 1mrq A 1ds0 A 2gvv A 1zpg C 1v71 A 1lzl A 1q5m B
1rqj A 2pll B 1ppo A 4lip D 2iki A 1gyh A 1zgk A 1tca A 1qwk A 1gmy A 1frb A
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1gok A 1dqy A 1g4h A 1bqc A 1nq6 A 1lok A 1cnv A 1q0z A 1wb4 B 1ltu A 1jln A
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1uol B 1q0u A 1oa2 F 2o2x A 1fva A 1l8b B 1nn1 A 3c7i A 1jfx A 1txl A 1wnx B
1g3u A 2ayh A 1agy A 1r55 A 1l8f A 1gbg A 1ijb A 1cpn A 1pt6 B 4tmk A 4eng A
3gar A 1v77 A 1ppn A 1hbp A 1ff3 C 1yzq A 1hjz B 1h4h D 1p3u A 1aun A 1dix A
1o0e A 1pzs A 1d4o A 1h2e A 1vg8 A 2blu A 1nf8 A 1cjw A 1qoz B 1bs9 A 2cd2 A
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2fko A 1dyw A 1h4o C 1zmf A 2fcr A 1mmq A 2ery B 2c8s A 2ow9 A 1jhj A 1n6n A
2bem C 1ek0 A 1vi3 A 1yvd A 1ofv A 1obo B 1rm8 A 1mug A 2cua A 1f3z A 1z4r A
1z2a A 1od3 A 1ddw A 1uuy A 1kao A 2nvh A 2gkp A 1xo7 A 1qst A 1vai A 1nyk A
2bit X 1zp5 A 1g81 A 1nrz D 1dly A 1sen A 1mz4 A 1n08 B 1uz2 X 1ist B 1gpr A
3dfr A 1tp9 C 1htw A 1d2a A 2ijq A 2icg A 1mxi A 1fm4 A 1mfm A 1ra8 A 1dg7 A
1q0n A 1xdf B 1edu A 2hbo A 1dg9 A 1jyh A 1e00 A 2fqt A 1elk A 1kva A 1kng A
1bj7 A 1gy1 A 1npk A 1bfg A 1ab0 A 2oeb A 1o1x A 1icx A 1m16 B 1gui A 2spo A
1oj6 D 1yaz A 1o7u A 1md6 A 1emy A 1mno B 2nsr A 1gdj A 1gwm A 2ob5 A 1l1d B
1lic A 1q0e A 1fg4 A 1id0 A 1oal A 1w1g A 2i8g A 1e5p B 1st9 A 1stn A 1oz9 A
1zzo A 1nb9 A 1akt A 1t2w C 1mba A 1h97 B 1jf4 A 1o4w A 1kjl A 1it2 A 2oyn A
2hd9 A 1uy3 A 1p90 A 1at0 A 2d59 A 1lit A 1q1u A 1j7g A 1b20 A 1tzx B 1w9t A
1hdk A 1gz2 A 1iuk A 1ov8 B 1rfs A 1fvx A 1ktg A 1lhi A 1jer A 2fs6 B 3bzp A
1c1f A 1xs0 A 1eca A 1o13 A 1mvo A 1moy A 1pdo A 1lu4 A 2aif A 1is6 A 3gal A
1vyf A 1p0z A 1dqg A 1e29 A 1r9h A 1fsj B 1opb C 1uc7 B 1tu9 A 2fuf A 1o8v A
2ia7 A 1kqw A 1zwz A 1bea A 1c52 A 1uxx X 2ohw B 1c7k A 1srr A 1icm A 1hmt A
1mdc A 1lju A 3nul A 1jb3 A 1mai A 1wna A 1cc3 A 1mc9 A 1r29 A 2czw A 1chn A
1cuo A 2ccw A 1ow4 B 1u79 A 1cot A 1a4a B 1ou8 B 1i3u A 1u29 A 2bt6 A 1ijt A
1tp6 A 2fi9 A 1doi A 1ijx A 1zes A 1rzy A 1dbw B 2gte B 1fao A 1t1j A 1ugu A
1jug A 1r26 A 1eaz A 8paz A 1cxc A 2cw4 A 1oae A 1zia A 1m5t A 1rtx A 1f9m A
2fc3 A 1v30 A 1c44 A 2trx A 1hq8 A 1hxr B 1upq A 1pmy A 1wou A 1ufy A 1f7l A
1whi A 1qto A 1m9z A 3b7c A 2pl1 A 1buo A 1ifr A 2a9o A 1tmy A 1ikt A 1ra4 A
1tq3 A 1o7i B 1opc A 2cyj A 1h4y B 1h8u A 2fne B 2byg A 2od5 A 4fiv A 1gou B
1pz4 A 1dlw A 1mg4 A 6fiv A 1td0 D 1thx A 2pyq A 1rtu A 1svy A 2iay A 1o4i A
1n8v B 1dw0 B 1ytc A 3c2c A 2q3w A 1ccr A 2o3f C 1i7h C 1qwx B 1pva A 1kr7 A
1rwy A 1n9l A 5pal A 1a75 B 2dg3 A 1tuw A 1b8r A 1bkr A 1rwy B 1bu3 A 1irv A
1kaf B 1omd A 1gn0 A 1i1j B 1d3w A 1co6 A 2q5b B 1iib B 1oqq B 2r48 A 1erw A
1t5k B 1rms A 1hrc A 2fmb A 1i0x D 1ln4 A 5cyt R 2h3l B 1xmt A 1h7m A 1tsf A
4vub A 2bo1 A 1l8r A 1o5u A 1n3y A



Table S2. Parameters of the probability density function: p(R; τ) = Aτ Rγτ

1+exp(βτ (R−µτ ))
derived from histograms

of reduced central distances, R, collected for all types of heavy atoms of all types of amino acids as ocurring
in globular proteins from the learning set (listed in the supplementary Table S1). Heavy atoms in side chains
that are characterized by central distances distributed significantly different from central distances of Cα atoms
(Kolmogorov-Smirnov tests with p-value < 0.000001) were marked with stars.

τ=(Aa, Atom) Aτ µτ βτ γτ τ=(Aa, Atom) Aτ µτ βτ γτ

A N 1.85954 1.14344 9.62103 2.01663 H N 1.79522 1.14741 10.5185 1.77569
A O 1.88563 1.14069 9.13446 2.1443 H O 1.64444 1.17279 10.3303 1.60987
A C 1.919 1.13577 9.5249 2.12155 H C 1.71863 1.1582 10.4955 1.67697
A Cα 1.86656 1.13408 8.70091 1.99614 H Cα 1.74533 1.15543 10.1783 1.73945

· A Cβ 1.90715 1.10367 7.09949 1.9342 · H Cβ 1.79077 1.14146 8.99532 1.79405
CSS N 2.42082 1.07441 8.54337 3.0098 · H Cγ 1.66554 1.16869 8.73623 1.75192
CSS O 2.16193 1.11001 8.78373 2.88278 * H Nδ1 1.55861 1.19585 8.51195 1.72934
CSS C 2.22361 1.10463 9.01742 2.9227 * H Cδ2 1.56118 1.1889 8.20466 1.66551
CSS Cα 2.4535 1.06968 8.54859 2.96551 * H Cε1 1.38993 1.24323 8.33837 1.613

· CSS Cβ 3.61427 0.969087 8.10373 3.65727 * H Nε2 1.3804 1.24305 8.17855 1.56715
· CSS Sγ 4.87096 0.895388 7.75633 3.96847 I N 2.28888 1.0443 10.0481 1.76938
CSH N 2.24242 1.01742 9.4792 1.49511 I O 1.97195 1.09031 10.7303 1.58805
CSH O 2.03475 1.0501 9.11637 1.43533 I C 2.0243 1.07838 10.7318 1.58331
CSH C 2.06666 1.04238 9.39009 1.41924 I Cα 2.45109 1.01476 9.4227 1.7797
CSH Cα 2.51755 0.980198 8.93293 1.60296 · I Cβ 3.0675 0.940875 8.31378 1.96042

· CSH Cβ 2.69044 0.953012 8.91117 1.59813 * I Cγ1 3.95679 0.875253 7.82796 2.22682
· CSH Sγ 2.98544 0.92291 8.7473 1.68042 * I Cγ2 3.27028 0.908294 7.47578 1.97036

C N 2.20509 1.0562 8.49479 1.85681 * I Cδ1 4.95071 0.818597 7.43178 2.43311
C O 2.0752 1.09025 8.52757 1.80324 K N 2.73216 1.07917 10.8264 4.74762
C C 2.03371 1.08615 8.90352 1.78213 K O 2.10346 1.13886 10.4785 3.95028
C Cα 2.42883 1.02375 8.19802 1.95379 K C 2.33073 1.11818 11.0779 4.28649

· C Cβ 2.77991 0.979176 7.9176 2.05535 K Cα 2.39826 1.10889 11.0951 4.81372
· C Sγ 3.06552 0.947826 7.78738 2.11068 * K Cβ 2.08623 1.13076 10.6215 5.00503
D N 1.85486 1.18094 11.289 3.27425 * K Cγ 1.72442 1.17117 10.461 4.91766
D O 1.89458 1.1661 10.1346 3.40543 * K Cδ 1.41126 1.20814 10.3063 5.11234
D C 1.89924 1.17198 10.967 3.40343 * K Cε 1.15114 1.25083 10.2292 5.15416
D Cα 1.74977 1.19626 11.1195 3.43601 * K Nζ 0.95605 1.29372 10.1785 5.12301

* D Cβ 1.46201 1.25025 10.8146 3.22751 L N 2.08193 1.09252 10.6923 1.84865
* D Cγ 1.3105 1.285 11.0274 3.27626 L O 2.00599 1.10513 10.0332 1.85942
* D Oδ1,δ2 1.23955 1.30143 10.6261 3.23178 L C 2.04411 1.09916 10.5414 1.84819
E N 1.98557 1.15871 10.8956 3.64001 L Cα 2.21541 1.06739 10.1249 1.87492
E O 1.85071 1.17845 10.8713 3.46577 * L Cβ 2.56815 1.01039 8.90099 1.96028
E C 1.9308 1.16974 11.357 3.57748 * L Cγ 3.08358 0.94331 7.82283 2.07451
E Cα 1.77466 1.19266 11.4089 3.64965 * L Cδ1,δ2 3.7841 0.877396 7.04436 2.26302

* E Cβ 1.48677 1.24168 11.0907 3.54274 M N 2.16412 1.07156 9.2319 1.88134
* E Cγ 1.31626 1.27515 10.8993 3.57997 M O 2.2221 1.06911 9.223 1.98419
* E Cδ 1.7199 1.2982 10.7479 3.88045 M C 2.19126 1.07248 9.55179 1.92684
* E Oε1,ε2 1.098 1.31389 10.4551 3.89444 M Cα 2.3475 1.04142 8.86534 1.93347
F N 2.26286 1.07153 10.3102 1.80383 · M Cβ 2.57036 0.998159 7.92453 1.93913
F O 2.23484 1.06709 9.84234 1.93161 · M Cγ 3.31598 0.903553 6.74281 2.13118
F C 2.20673 1.07025 10.435 1.87167 * M Sδ 4.4474 0.80527 6.1702 2.29823
F Cα 2.33045 1.04534 10.1424 1.84731 * M Cε 4.75168 0.773953 5.79667 2.34705

· F Cβ 2.70951 0.994458 9.58106 1.94113 N N 2.02814 1.14674 10.2247 3.1657
* F Cγ 3.21173 0.938349 8.82322 2.0412 N O 1.97925 1.14291 9.10539 3.08941
* F Cδ1,δ2 3.43458 0.912336 8.25185 2.07026 N C 2.0731 1.13614 9.72506 3.21494
* F Cε1,ε2 3.97823 0.861718 7.50868 2.15559 N Cα 1.91178 1.16099 9.83299 3.18936
* F Cζ 4.07383 0.850231 7.34663 2.14493 * N Cβ 1.60765 1.2129 9.53132 2.97622
G N 1.41659 1.25703 10.7643 1.83934 * N Cγ 1.39266 1.26559 9.86253 2.8308
G O 1.52184 1.21896 8.89533 1.944456 * N Oδ1 1.3314 1.2813 9.66778 2.75331
G C 1.51989 1.22519 9.73177 1.95465 * N Nδ2 1.28146 1.29503 9.68075 2.76466
G Cα 1.36597 1.26867 9.86165 1.8015

Continued on the next page.



Table S2. – Continued.

τ=(Aa, Atom) Aτ µτ βτ γτ τ=(Aa, Atom) Aτ µτ βτ γτ

P N 1.74989 1.19768 11.1837 3.07058 V N 2.14248 1.06128 9.61542 1.69647
P O 1.73507 1.19726 10.6971 3.09794 V O 1.95298 1.09021 9.79511 1.58572
P C 1.72868 1.20225 11.3192 3.077 V C 2.01885 1.07492 9.627664 1.58672
P Cα 1.65503 1.21496 11.1319 2.9767 V Cα 2.31811 1.02622 8.74914 1.72555

* P Cβ 1.39257 1.26921 10.0829 2.65189 · V Cβ 2.82571 0.959132 7.78537 1.91297
* P Cδ 1.52256 1.23685 10.1116 2.77894 * V Cγ1,γ2 3.4067 0.898944 7.10407 2.09198
* P Cγ 1.34911 1.27895 9.66413 2.56784 W N 2.16666 1.06852 9.68157 1.8162
Q N 2.08951 1.14403 10.8973 3.28799 W O 2.52022 1.02418 8.45761 2.10325
Q O 1.91142 1.16703 10.6304 3.07799 W C 2.60672 1.01789 8.88978 2.12404
Q C 1.96307 1.16312 11.2172 3.12275 W Cα 2.48678 1.02519 9.18021 1.96748
Q Cα 1.90483 1.17245 11.1804 3.2515 · W Cβ 2.74637 0.993851 9.08366 2.03041

* Q Cβ 1.66129 1.21203 10.922 3.14764 · W Cγ 2.87076 0.992432 9.78947 2.12948
* Q Cδ 1.34825 1.27416 10.5634 3.22498 · W Cδ1 2.39333 1.04045 9.45923 1.95456
* Q Cγ 1.51229 1.23811 10.5453 3.20969 * W Cδ2 3.2157 0.97072 10.5317 2.25817
* Q Oε1 1.30044 1.28201 10.0559 3.22444 · W Nε1 2.47356 1.03365 9.33899 2.03229
* Q Nε2 1.23968 1.30301 10.4475 3.13179 · W Cε2 2.9114 0.991737 9.76106 2.18207
R N 2.61297 1.08558 10.7821 3.58399 * W Cε3 3.66434 0.93326 10.0902 2.33315
R O 2.2283 1.1188 10.1269 3.20002 · W Cζ2 2.87099 0.988483 9.15555 2.14396
R C 2.37103 1.10773 10.6765 3.35447 * W Cζ3 3.60627 0.928426 9.44348 2.28163
R Cα 2.40342 1.10845 10.9546 3.5691 · W Cη2 3.14229 0.959377 9.06995 2.16779

* R Cβ 2.14991 1.13602 10.7208 3.54819 Y N 2.45871 1.06558 10.5233 2.36149
* R Cγ 2.03587 1.14804 10.4279 3.67619 Y O 2.55032 1.0485 9.64581 2.38468
* R Cδ 1.75977 1.18286 9.88739 3.62322 Y C 2.57736 1.05001 10.2519 2.39466
* R Nε 1.72646 1.18439 9.83642 3.84888 Y Cα 2.68635 1.0426 10.4916 2.47518
* R Cζ 1.63791 1.19295 9.59623 3.99212 · Y Cβ 3.1316 1.00069 9.91091 2.65577
* R Nη1,η2 1.54164 1.20664 9.31346 3.94206 · Y Cγ 2.96367 1.01834 10.1356 2.64251

S N 1.65424 1.19857 9.83601 2.19989 · Y Cδ1,δ2 2.72005 1.0364 9.81383 2.52674
S O 1.64665 1.20153 9.61894 2.30612 * Y Cε1,ε2 2.35074 1.07434 9.54375 2.36893
S C 1.66862 1.19903 9.96855 2.31836 * Y Cζ 2.20694 1.09349 9.5077 2.31764
S Cα 1.53058 1.22762 9.73145 2.14097 * Y Oη 1.8242 1.1511 9.06886 2.09818

* S Cβ 1.3328 1.28044 9.26341 1.94463
* S Oγ 1.33149 1.28084 9.09863 2.01394
T N 1.91911 1.1521 10.5342 2.36853
T O 1.87189 1.15123 9.33962 2.308
T C 1.90488 1.15021 9.89948 2.34845
T Cα 1.78745 1.17279 10.157 2.26954

* T Cβ 1.56428 1.21837 9.83832 2.10378
* T Oγ1 1.53926 1.22632 9.78322 2.1719
* T Cγ2 1.40288 1.25504 9.2939 1.85524



Table S3. Geometrical and functional characteristics of structures from the non-redundant apo-holo set created
by Hwang and Schroeder (BMC Struct Biol 6:19 (2006)) and performance of two binding site recognition
methods for two cutoff distances. Geometrical descriptors, aspericity (Asph.) and compactness (Comp.), are
reported for apoproteins. The list is ordered according to the increasing asphericity. When a method was unable
to find a site, the rank is ∞. Enzyme class assignments according to the Catalytic Site Atlas (Nucleic Acids
Res 32:D129-33 (2004)) version 2.2.12 (January 2010).

PDB and chain ID Enzyme class or the Geometry FOD SurpResi

Apo Holo — Ligands non-substrate ligand Asph. Comp. 4 Å 6 Å 4 Å 6 Å

1nna A 1ivd A
{
FUL, ST1,
NAG, MAN

3.2.1.18 0.0144 0.5617 1 1 1 1

2sil A 2sim A DAN 3.2.1.18 0.0198 0.555 1 2 1 1
2ctb A 2ctc A HFA 3.4.17.1 0.0236 0.5836 ∞ 2 1 1
5cpa A 7cpa A FVF 3.4.17.1 0.0237 0.5744 ∞ 1 ∞ 1
1brq A 1rbp A RTL retinol 0.0237 0.5431 1 1 ∞ 2
1hxf H 1dwd H MID 3.4.21.5 0.0241 0.536 ∞ 1 2 2
2cba A 2h4n A AZM 4.2.1.1 0.025 0.5497 1 1 1 1
4ca2 A 1okm A SAB 4.2.1.1 0.0251 0.5592 1 1 ∞ 1
1cge A 1hfc A PLH 3.4.24.7 0.037 0.5682 1 1 1 1
1esa A 1inc A ICL 3.4.21.36 0.0375 0.5595 ∞ 1 ∞ 1
1stn A 1snc A THP 3.1.31.1 0.0378 0.56 1 1 1 1
1chg A 3gch C OAC 3.4.21.1 0.0397 0.5645 ∞ ∞ ∞ 2
1ypi A 2ypi A PGA 5.3.1.1 0.041 0.5401 1 1 1 1
3tms A 1bid A FMT,UMP 2.1.1.45 0.0428 0.52 1 1 1 1
1ifb A 2ifb A PLM fatty acid 0.0446 0.6057 1 1 1 1
1qif A 1acj A THA 3.1.1.7 0.0451 0.4984 ∞ 2 1 1
1ula A 1ulb A GUN 2.4.2.1 0.0562 0.5017 ∞ ∞ ∞ 1
1ime A 1imb A LIP 3.1.3.25 0.0588 0.5353 1 1 1 1
3ptn A 3ptb A BEN 3.4.21.4 0.0602 0.598 1 1 1 1
2tga A 1mtw A DX9 3.4.21.4 0.0617 0.6043 ∞ ∞ ∞ 2
1bya A 1byb A GLC 3.2.1.2 0.0646 0.51 1 1 1 1
1krn A 2pk4 A ACA 3.4.21.7 0.0764 0.6402 ∞ ∞ 1 1
1phc A 1phd A HEM,PIM 1.14.15.1 0.0795 0.508 1 1 4 4
5dfr A 4dfr A MTX 1.5.1.3 0.0806 0.5479 1 1 1 1
1djb A 1blh A FOS 3.5.2.6 0.0833 0.5586 1 1 2 1
2fbp B 1fbp B AMP,F6P 3.1.3.11 0.0864 0.4873 1 2 1 1
1ahc A 1mrg A ADN 3.2.2.22 0.0937 0.5505 ∞ 1 3 1
1pdy A 1pdz A ACE,PGA 4.2.1.11 0.096 0.5315 2 1 2 1
2ctv A 5cna A MMA saccharide 0.0979 0.5612 ∞ ∞ ∞ ∞
1hsi A 1ida A

{
QND, PR0,
PY2, PPL

{
3.4.23.47, 2.7.7.7,
3.1.26.13, 2.7.7.49

0.1121 0.5362 1 1 2 1

1bbs A 1rne A NGA,C60 3.4.23.15 0.1159 0.5135 1 1 1 1
1hel A 1hew A NAG 3.2.1.17 0.1204 0.6043 ∞ 1 5 5

3phv A 4phv A VAC
{
2.7.7.49, 3.4.23.16,
2.7.7.7, 3.1.26.13

0.1219 0.5386 ∞ ∞ ∞ 1

6ins E 3mth A MPB benzoic acid ester 0.1259 0.5948 ∞ ∞ ∞ ∞
3app A 1apu E IVA,STA,EHN 3.4.23.20 0.1274 0.5507 1 1 1 1
3lck A 1qpe A PP2,PTR 2.7.10.2 0.1356 0.4987 ∞ 1 ∞ 2
1psn A 1pso E IVA,STA 3.4.23.1 0.1417 0.5352 2 2 2 1
8rat A 1rob A C2P 3.1.27.5 0.1427 0.5795 1 1 2 1

1a6u H 1a6w H NIP iodonitrophenylacetyl-
aminocaproic acid 0.1446 0.6371 ∞ ∞ ∞ 2

1swb A 1stp A BTN biotin 0.145 0.542 1 1 ∞ ∞
1pts A 1srf A MTB azobenzoic acid 0.1553 0.5564 1 1 1 4
3p2p A 5p2p A DHG 3.1.1.4 0.1667 0.5674 1 1 1 1
2rta A 1stp A BTN biotin 0.1703 0.5332 ∞ 1 ∞ ∞
8adh A 1cdo A NAD 1.1.1.1 0.1795 0.5026 1 1 1 1
1l3f E 2tmn E 0FA 3.4.24.27 0.1966 0.573 ∞ 1 1 1
1npc A 1hyt A DMS,BZS 3.4.24.28 0.2032 0.557 1 1 1 1
1gcg A 1gca A GAL aldohexose 0.2881 0.5325 1 1 4 2
1a4j B 1igj D DGX digoxin 0.4645 0.4737 ∞ ∞ ∞ ∞



Figure S1. Histograms and dependencies of several characteristics of the learning protein set (CC – correlation
coefficient).
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Figure S2. Probability density function used in this
work:

p(R; τ) =
Aτ Rγτ

1 + exp(βτ (R− µτ ))

for example values of γτ . Parameters: µτ = 1.2, βτ =
10; values of Aτ are chosen accordingly to normalize
distributions. In general, when γτ < 2, the function
better fits histograms of atomic central distances for
hydrophobic amino acids; when γτ > 2, it better fits
histograms of atomic distances for hydrophilic residues.
For γτ = 2 the function adopts the simplest form of a
special case (ατ = 1) demonstrated by Gomes et al.
(Proteins 66(2):304-20 (2007)). The location of the
maximum is β−1 (γ +W (γ exp(βµ− γ))), where W is

the (Lambert’s) omega function, and the mean value can be estimated by −Aβ−(γ+2) Γ(γ+2)Liγ+2 (− exp(βµ)),
where Γ and Li are the (Euler’s) gamma and (Jonquière’s) polylogarithm functions.
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Figure S3. Distributions of central distances of Cα (A) and distal side chain atoms (B) of all amino acids.
Curves for amino acids with hydrophobic side chains are green, polar charged – red and blue, polar uncharged
– pink and violet.
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Figure S4. Probability densities of Cα and distal side chain
atoms of Cys. Two cases are shown separately: Cys bridged (CSS)
and not bridged (CSH) by disulfide bonds.
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