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Abstract

The aim of this study is to demonstrate that in molecular dynamical systems with the underly-

ing bi- or multistability, the type of noise determines the most strongly attracting steady state or

stochastic attractor. As an example we consider a simple stochastic model of autoregulatory gene

with a nonlinear positive feedback, which in the deterministic approximation has two stable steady

state solutions. Three types of noise are considered: transcriptional and translational – due to the

small number of gene product molecules and the gene switching noise – due to gene activation and

inactivation transitions. We demonstrate that the type of noise in addition to the noise magnitude

dictates the allocation of probability mass between the two stable steady states. In particular, we

found that when the gene switching noise dominates over the transcriptional and translational noise

(which is characteristic of eukaryotes), the gene preferentially activates, while in the opposite case,

when the transcriptional noise dominates (which is characteristic of prokaryotes) the gene preferen-

tially remains inactive. Moreover, even in the zero-noise limit, when the probability mass generically

concentrates in the vicinity of one of two steady states, the choice of the most strongly attracting

steady state is noise type-dependent. Although the epigenetic attractors are defined with the aid

of the deterministic approximation of the stochastic regulatory process, their relative attractivity

is controlled by the type of noise, in addition to noise magnitude. Since noise characteristics vary

during the cell cycle and development, such mode of regulation can be potentially employed by cells

to switch between alternative epigenetic attractors.
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1. Introduction

From the mathematical perspective intracellular regulatory processes can be considered as stochas-

tic dynamical systems. Stochasticity arises due to the limited number of reacting molecules such as

gene copies, mRNA or proteins. In systems with underlying bistability, even for low noise, the

stochastic trajectories exhibit stochastic jumps between basins of attraction and thus diverge qual-

itatively from the deterministic solutions. The relative stability of steady states depends on the

system volume (or noise strength) [1]. In this study, we analyze the bistable stochastic system with

three different types of noise and demonstrate that the dominating type of noise determines the most

strongly attracting steady state (global stochastic attractor). That is, two systems with the same de-

terministic approximation may have qualitatively different stationary probability distributions (SPD)

depending on the noise characteristic, even in the zero noise limit.

We consider two models of gene expression with autoregulation. We will assume that the gene is

positively regulated by its own product in a cooperative manner, which leads to the nonlinear positive

feedback and bistability. Single-cell experiments suggest that gene expression can be described by

a three-stage model [2, 3]. The gene promoter can switch between two states [4, 5, 6], one active

and one inactive. Such transitions could be associated with binding and unbinding of repressors

or transcription factors or with changes in chromatin structure. Transcription can only occur if

the promoter is active. The next two stages are mRNA transcription and protein translation. In

certain cases when mRNA is very unstable and quickly translated, transcription and translation

processes can be lumped together [7, 8]. The resulting model has thus two stages: gene regulation

and protein synthesis. Such simplification allows for analytical treatment of the problem, however,

lumping of transcription and translation processes may influence the impact of feedback on noise

strength [9]. Therefore, in addition to the simplified two-stage model we analyze numerically a more

detailed three-stage model in which processes of gene regulation, mRNA transcription and protein

translation are explicitly included. The considered models have three types of noise: transcriptional

and translational – due to the limited number of product molecules, and gene switching noise – due

to gene state transitions.

Transcriptional and translational noises are characteristic for prokaryotes in which the mRNA

and protein numbers are very small [10, 11, 12]. Recently, Taniguchi et al. quantified the mean

expression of more than 1000 E. coli genes and found that the most frequent average protein number

is of order of 10, while the most frequent average mRNA number is smaller than one [13]. The gene

switching in prokaryotes is thought to be very fast and thus gene regulation is frequently considered

in the so called adiabatic approximation [8], as a process that includes only mRNA transcription and

protein translation [14, 15, 16].

Gene switching noise is important in eukaryotes [2, 4, 6, 17] in which the transitions between the

on and off states are much less frequent. Analysis of gene expression in mammalian cells showed

that mRNA is synthesized in bursts, during periods of time when the gene is transcriptionally active
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[5]. Slow gene switching can result in bimodal mRNA and protein probability distributions even in

systems without underlying bistability [8, 16]. Bimodality may arise also without bistability in two-

stage cascades in which the regulatory gene produces transcription factors that have a nonlinear effect

on the activity of the target gene [18]. In contrast to prokaryotes, in eukaryotes the characteristic

mRNA and protein numbers are much larger. Therefore the transcriptional and translational noises

in many cases may be neglected [19, 20, 21] or considered in the diffusion approximation [22, 7].

Cell cycle transcriptional regulator gene SWI6 in yeast is an example of a gene with expression noise

originating almost only from gene switching noise, while transcriptional noise is negligible [23].

The bistable regulatory elements received a lot of attention in the last decade as they enhance

heterogeneity and may allow cells in multicellular organism to specialize and specify their fate.

Decisions between cell death, survival, proliferation and senescence are associated with bistability

and stochasticity, magnitude of which controls transition rates between the particular attractors

[24, 25, 26]. In prokaryotes the bistability is regarded as an optimal strategy for coping with infrequent

changes in the environment [27].

The simplest regulatory element exhibiting bistability is the self-regulating gene controlled by a

nonlinear positive feedback [8, 28, 29, 30, 31, 32]. While not often found as an isolated entity, the

self-regulating gene is a common element of biological networks; for example, 40% of E. coli tran-

scription factors negatively regulate their own transcription [33]. Sinderen et al. demonstrated that

transcription factor comK acts as an autoregulatory switch in Bacillus subtilis [34]. The synthetic

auto-regulatory eukaryotic gene switch was studied in Saccharomyces cerevisiae [35]. The other in-

tensively studied regulatory element exhibiting bistability is the toggle switch – a pair of mutual

repressors [36, 37]. A classical example is the double-negative regulatory circuit governing alterna-

tive lysogenic and lytic states of phage lambda [38], lactose utilization network [39] or Delta-Notch

regulation [40].

Despite the low copy number of proteins and mRNAs genetic switches may exhibit very low

transition rates, resulting in stable epigenetic properties that persist in simplest organisms for many

generations [38, 41], reviewed by [37]. The attractors of genetic networks can be associated with

distinct cell types achieved during cell differentiation [41, 42]. In single cell, in the long time scale

the relative occupancy of steady states is determined by their relative stability. The same, however,

may not be true for cell population when the two steady states are associated with different growth

rates. As demonstrated, by Nevozhay et al. using synthetic bistable gene circuit, the fraction of

cells in the most strongly attracting steady state may be low, if these cells have lower growth rate

than cells in the less stable steady state [43]. Thus, in the context of cell population the relative

occupancy of a given state is defined by rates of state to state transitions (or memory) and fitness

associated with particular steady states.

The paper is organized as follows: in the following section we consider the two-stage gene au-

toregulation model and its three approximations:

– the deterministic approximation
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– the continuous approximation with the gene switching noise only,

– and the adiabatic approximation with the transcriptional and translational noise only.

Based on two last approximations, we demonstrate that the type of noise determines the global

attractor. Then, we numerically calculate the SPD in the case when two types of noise are present

and show that the most strongly attracting steady state is determined by the prevalent type of

noise. For a relatively large subdomain in the parameter space, the SPD is concentrated either in

one or the other stable steady state depending on the dominating type of noise. We supplement our

consideration of the two-stage model by analysis of SPD following from Langevin equations in which

the white noise term is added to the equation obtained in the deterministic approximation.

Finally, to confirm our findings, we consider a more detailed, three-stage model in which pro-

cesses of gene regulation, mRNA transcription and protein translation are explicitly included, which

enables distinguishing of transcriptional and translational noises. Within the latter model we demon-

strate that the global attractor is determined by relative magnitudes of the transcriptional and gene

switching noises, while the translational noise is the least important. We conclude discussing these

two types of noise in the context of gene expression in bacteria and eukaryotes.

2. RESULTS

2.1. Two-stage model and its approximations

We assume that the gene may be in one of the two states – active or inactive, Fig. 1A. In this

model we assume that the protein is synthesized directly from the gene, with the rate constant Q

only when the gene is active and is degraded with the rate constant r. We chose time units in

which r = 1. The rate constant Q is proportional to the product of transcription and translation

rate constants Q1 and Q2. The autoregulation arises when gene activation and/or inactivation rates

(c(Y ) and b(Y )) depend on the level of synthesized protein Y . The model defines a time continuous

Markov process described by two random variables: the gene state G(t) ∈ {0, 1} and number of

protein molecules Y (t) ∈ N. The resulting transition propensities are
G = 0→ G = 1 c(Y ),

G = 1→ G = 0 b(Y ).

Y = n→ Y = n+ 1 QG,

Y = n→ Y = n− 1 n.

(1)

Let gn denote the probability that {G, Y } = {1, n} and hn denote the probability that {G, Y } =

{0, n}. Probabilities gn and hn follow a countable set of chemical master equations{
dgn
dt

= Q(gn−1 − gn) + (n+ 1)gn+1 − ngn + c(n)hn − b(n)gn,
dhn
dt

= (n+ 1)hn+1 − nhn − c(n)hn + b(n)gn,
(2)

where we set g−1 = 0 to close the first of Eqs. (2).
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Here, we focus on such c(n) and b(n) that define the positive nonlinear autoregulation leading to

bistability. Thus, we assume

c(n) = c0 + (c2/Q
2)n2, b(n) = b0 with c0, c2, b0 > 0. (3)

Such type of regulation arises in the case when the gene is switched on by its own product in a

cooperative manner or by the other transcription factor present at some constant level. In order to

analyze systems with various average numbers of proteins, but having the same deterministic limit,

the nonlinear term (c2/Q
2)n2 is scaled by Q, which is equivalent to the assumption that the gene

switching rates are proportional to the protein concentration rather than to the protein number.

Even in the stationary case, the system (2) can be solved analytically using a moment generating

function only in the case when c(n) and b(n) are both constant, or one of them is constant and the

other is linear in n [8]. In our case (3), due to the second order nonlinearity in c(n), the method

proposed in [8] leads to the third order ordinary differential equation, we failed to solve. We will

thus estimate the marginal SPD fn = gn + hn corresponding to the exact model by Monte Carlo

simulations of the system (1). Analytically, we will study three approximations to the exact model:

the continuous approximation with the gene switching noise only, the adiabatic approximation with

the transcriptional noise only, and the deterministic approximation, Fig. 1B.

2.1.1. Deterministic approximation

This classical approximation [44] is justified when the transition rates c(n) and b(n) are much

greater than one, and simultaneously the characteristic number of protein molecules is very large.

In such a case one may consider y = Y/Q as a continuous variable. The scaled protein level y(t) is

given by a single ordinary differential equation

dy

dt
= G(y)− y, where G(y) =

c(y)

c(y) + b(y)
. (4)

In our specific case, c(y) = c0 + c2y
2 and b(y) = b0, thus the stationary solutions of the equation (4)

are the real roots of the third order polynomial

W = −c2y3 + c2y
2 − (c0 + b0)y + c0 = 0. (5)

We will focus on the bistable case whenW has three real roots such that 0 < y1 < y2 < y3 < 1. Steady

states y1 and y3 are stable, while y2 is unstable. Due to the fact that W has the same coefficient at

the third and the second power, its roots satisfy y1 + y2 + y3 = 1. The original coefficients b0, c0, c2

may be recovered from the roots by the following relations:

c0 =
b0y1y2y3

y1(y2 + y3) + y2y3(1− y1)
, c2 =

b0
y1(y2 + y3) + y2y3(1− y1)

. (6)
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Due to relation y3 = 1− y1− y2, the (y1, y2, y3) parameter space may be reduced to the domain D 3
{y1, y2} such that y1 < y2 and 1− y1 − y2 = y3 > y2.

2.1.2. Continuous approximation

The model with noise resulting only from gene switching was analyzed previously in [29]. When

the characteristic number of protein molecules is very large, as in the deterministic case, y = Y/Q

may be considered a continuous variable which follows

dy

dt
= G− y, (7)

where G, as in the exact model, is given by the process (1). These assumptions define a time

continuous piece-wise deterministic Markov process. Probabilities gn(t) and hn(t) are now replaced

by the continuous functions g(y, t), h(y, t), that satisfy [19, 21]

∂h

∂t
− ∂

∂y
(yh) = b(y)g − c(y)h, (8)

∂g

∂t
+

∂

∂y
((1− y)g) = −b(y)g + c (y)h. (9)

The above system has the following stationary solution [30]

h(y) = exp

[∫ (
−b(y)

(1− y)
+
c(y)− 1

y

)
dy

]
, g(y) =

yh(y)

(1− y)
. (10)

In our specific case, when c(y) = c0 + c2y
2 and b(y) = b0, the marginal SPD f(y) = g(y) + h(y) may

be expressed analytically:

f(y; c2, c0, b0) = Ce
1
2
c2y2yc0−1(1− y)b0−1, (11)

where C is such that
∫ 1

0
f(y) = 1.

Now, we will replace original coefficients b0, c0, c2 by y1, y2 (see Eq. 6) and introduce σ := 1/b0.

Let us note that for such defined σ all gene switching noise rates b0, c0, c2 are inversely proportional

to σ. The coefficient σ is an inverse of the adiabaticity coefficient, introduced in [8], and will be

referred to as a measure of gene switching noise. Specifically, we will consider the SPD in the limit

σ → 0. In this limit the SPD given by Eq. 11 converges either to the Dirac delta in y1 or in y3, i.e.

to δ(y1), or to δ(y3) for all {y1, y2} ∈ D, except {y1, y2} such that

lim
σ→0

f(y1; y1, y2, σ)

f(y3; y1, y2, σ)
:= C1, where 0 < C1 <∞. (12)

Eqs. 6, 11 and 12 define (in the implicit form) the separatrix Scontinuous
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(
1− y1
y1+y2

)(
y1

1− y1 − y2

)p1
ep2= 1, (13)

where

p1 =
y1y2(1− y1 − y2)

(1− y1)(1− y2)(y1 + y2)
, p2 =

2y1 + y2 − 1

2(1− y1)(y1 + y2)
. (14)

That is, in the continuous approximation, the bistability domain D is split by the separatrix Scontinuous

(on which 0 < C1 < ∞) into two subdomains. For {y1, y2} above the separatrix Scontinuous C1 = ∞
and the SPD converges to δ(y1) as σ → 0, while for {y1, y2} below the separatrix Scontinuous C1 = 0

and the SPD converges to δ(y3), see Fig. 2A.

Simulations of the stochastic process in the continuous approximation, i.e. simulation of a piece-

wise continuous process given by Eqs. 1 and 7, were performed using the Haseltine and Rowlings

algorithm [45, 20]. These simulations show significantly different behavior of the protein level y(t)

near each of the two stable stationary points (see Figs. 3C and 3D). When the trajectory is in the

vicinity of y1 (Fig. 3D) the characteristic time for which the gene is switched off ∼ 1/c(y1) is much

longer than the characteristic time for which the gene is switched on ∼ 1/b0. When the trajectory

is in the vicinity of y3 (Fig. 3C) these two times are similar. The characteristic departures from

both states y1 and y3 are larger towards y2 than in the opposite direction. For low noise there are

relatively few transitions through the unstable state y2. The frequency of these transitions decreases

to zero with decreasing noise.

2.1.3. Adiabatic approximation

This approximation is justified when transition rates c(n) and b(n) are much larger than the

protein degradation rate constant. In such a case, G may be replaced [8, 46] by its expected value

G = G(n) = c(n)/(c(n) + b(n)). This approximation leads to a birth-death process with birth and

death propensities:

B(n) = G(n)Q,

D(n) = n.
(15)

As in the case of the continuous approximation, the simulations show that trajectories near each

stable stationary point differ significantly, Fig. 4. The birth and death events are less frequent near

y1 than near y3.

Let Fn denote the stationary probability that the number of protein molecules is equal to n. In

the steady state the net probability current between neighboring states N and N+1 is equal to zero,

i.e.

FnB(n)− Fn+1D(n+ 1) = 0, (16)

which gives Fn in the form
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Fn = F0

n−1∏
i=0

B(i)

D(i+ 1)
. (17)

Eq. 17 defines the discrete probability density function Fn when
∑∞

n=1

(∏n−1
i=0

B(i)
D(i+1)

)
< ∞, which

is satisfied provided that for sufficiently large j, B(i)
D(i+1)

< a < 1 for all i > j. Since B(i)
D(i+1)

< Q/n,

the last condition holds. Now, we may choose F0 such that
∑∞

n=0Fn = 1. We analyze the discrete

probability density Fn for small ε = 1/Q. In the limit of ε → 0, the adiabatic approximation

converges to the deterministic approximation, and so the coefficient ε will be considered as a measure

of transcriptional and translational noise. Let FQ(y) := QFn, where y := n/Q, i.e. FQ(y) =

QFQ(0)
∏yQ−1

i=1
b(i/Q)

d(i/Q+1/Q)
, where b(i/Q) := B(i), d(i/Q) := D(i). Now,

logFQ(y) = logQ+ logFQ(0) +

yQ−1∑
i=1

log
b(i/Q)

d(i/Q+ 1/Q)
. (18)

In the limit of ε→ 0, d(i/Q+ 1/Q)→ d(i/Q). Next, replacing the sum by the integral, we obtain

logFQ(y) = logQ+ logFQ(0) +Q

∫ y

0

log
b(z)

d(z)
dz, (19)

thus

FQ(y) = QFQ(0) exp

(
Q

∫ y

0

log
b(z)

d(z)
dz

)
. (20)

Since
∫∞
0
FQ(z)dz = 1 we get

FQ(y) =
exp(Qφ(y))∫∞

0
exp(Qφ(z))dz

, (21)

where

φ(y) =

∫ y

0

log
b(z)

d(z)
dz. (22)

The Laplace’s method implies that in the limit of Q → ∞, the function FQ(y) converges to the

Dirac delta distribution δ(ym) in the unique global maximum ym of φ(y), provided that such global

maximum exists. In our case b(y) = Q(c0 + c2y
2)/(c0 + c2y

2 + b0) and d(y) = Qy. Using Eqs. 6 and

22 we obtain
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φ(y) = 2
√
y1y2y3 arctan[

y
√
y1y2y3

]− (23)

−2
√
y2y3 + y1(y3 + y2) arctan[

y√
y2y3 + y1(y3 + y2)

] +

+y(1 + log[
y1y2y3 + y2

y(y2y3 + y1(y3 + y2) + y2]
).

Since the extrema of FQ(y) coincide with the extrema of φ(y), the global maximum of φ(y) is either

in y1 or y3, thus the SPD converges either to δ(y1) or to δ(y3) as Q → ∞. Only in the non-generic

case, in which φ(y) has no global maximum, i.e. when

φ(y1) = φ(y3) (24)

the SPD converges to the sum of two Dirac delta functions A1δ(y1) + A3δ(y3). Eqs. 23 and 24

define the separatrix Sadiabatic. For {y1, y2} above the separatrix Sadiabatic the SPD converges to

δ(y1), while for {y1, y2} below the separatrix Sadiabatic the SPD converges to δ(y3) as ε→ 0, Fig. 2A.

The allocation of probability mass depends also on the magnitude of noise. In Fig. 2B we show the

separatrices, (defined as lines y2(y1) on which the SPD is equally distributed between the two basins

of attraction) obtained from Eq. 17 for two values of ε. The separatrices converge to Sadiabatic as

ε→ 0.

2.2. SPD dependence on the transcriptional and gene switching noise magnitudes

Simulations in the continuous and adiabatic models (see Figs. 3 and 4) were both performed

for point C = {y1 = 0.03, y2 = 0.27} in parameter space shown in Fig. 2A. For the continuous

approximation the characteristic departures from the stable steady states y1 and y3 are of similar

magnitude. The case of the adiabatic approximation is different. Here, the fluctuations around

point y3 are much larger than around point y1. This suggests that the average time spent in the

vicinity of point y1 before the transition to point y3 will be longer than the average time spent in the

vicinity of point y3 before the reverse transition. As a result the SPD for the adiabatic approximation

will concentrate around point y1, while for the continuous approximation the SPD will concentrate

around y3. This effect should be even more pronounced in the low noise limit when the transitions

between the two attractors are less frequent. Accordingly, as shown in Fig. 2A the separatrices

Sadiabatic and Scontinuous are different, and together they bound domain C, such that in the zero noise

limit for {y1, y2} ∈ C, the SPD of the continuous model converges to δ(y1), while the SPD of the

adiabatic model converges to δ(y3). In the further analysis we consider the three sets of roots shown

in Fig. 2A, i.e.

A = {0.1, 0.35} ∈ A,

B = {0.15, 0.25} ∈ B,
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C = {0.03, 0.27} ∈ C.
In Fig. 5, we compare the SPD of the adiabatic and of the continuous approximations. For

{y1, y2} =A and {y1, y2} =B the SPDs obtained in both approximations are concentrated (in the low

noise limit) in the vicinity of the same steady state, y1 and y3, respectively for A and B. However,

for {y1, y2} = C, the SPD of the adiabatic approximation is concentrated in the vicinity of y1, while

the SPD of the continuous approximation is concentrated in the vicinity of y3. Let us also note that

in case B the magnitude of noise controls the relative allocation of probability mass between basins

of attraction of steady states y1 and y3.

In the adiabatic approximation the gene switching noise σ is, by definition, identically 0. Similarly,

in the continuous approximation the transcriptional and translational noise ε is identically 0. We

thus showed that in the parameter subdomain C the system settles in the inactive state for ε/σ =∞
(adiabatic approximation) and settles in the active state for ε/σ = 0 (continuous approximation).

This suggests that there exist a range of parameters for which noise ratio ε/σ determines which of the

two steady states is the most strongly attracting. We now verify this conjecture considering the exact

model with different ε and σ values, see Fig. 6. To estimate the SPD we performed long-run Monte

Carlo simulations of the system (1) using the Gillespie algorithm [47]. For the analysis shown in

Fig. 6, we chose C = {0.03, 0.27} ∈ C. Such a choice of {y1, y2} produces the equimodal SPD in the

case when magnitudes of transcriptional and gene switching noises are comparable (and sufficiently

large), i.e. ε = 1/300 and σ = 1/100. We observe that when magnitude of the transcriptional or

gene-switching noise decreases to zero the SPD becomes unimodal. As expected from the analysis

shown in Fig. 5, the SPD is concentrated in y1 as σ → 0 (adiabatic approximation limit), and in

y3 as ε→ 0 (continuous approximation limit). Therefore, we demonstrated when two types of noise

are present, their relative magnitudes determine the global attractor. This effect has an analog in

equilibrium selection in evolutionary games [48].

2.3. Langevin approach

The classical approach to complex stochastic systems involves Langevin equation in which various

noise sources are replaced by white, which magnitude is either constant (additive noise) or is a

function of the solution (multiplicative noise), in the simplest case is proportional to the solution

(as in geometric Brownian motion equation). Here, we follow this procedure starting from the

deterministic approximation of our model. Langevin-Ito equation extending deterministic equation

4 is

dy

dt
= A(y) + ξ(t)

√
B(y)/V , where A(y) := G(y)− y, (25)

and ξ(t) is a Gaussian white noise, with

< ξ(t) >= 0, < ξ(t)ξ(t′) >= δ(t− t′). (26)
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In this description
√
B(y)/V is identified as noise intensity, where V is the volume of the reactor.

In the case of additive noise B(y) = const = B0. We consider also the case of multiplicative

noise, assuming that its magnitude is proportional to y(t) and set B(y) = y. The other choice

of multiplicative noise was made by Frigola et al. [49], who assumed that magnitude of noise is

proportional to the sum of birth and death rates (in our case it would be G(y) + y). One should

notice that such a choice is in a sense arbitrary since adding any function f(y) to birth and death

rates, leaves deterministic equation unchanged but changes its stochastic counterpart.

The Fokker-Planck equation corresponding to the above Langevin-Ito equation reads [22]

∂F (y, t)

∂t
= − ∂

∂y
((A(y))F (y, t)) +

1

2V

∂2

∂y2
(B(y)F (y, t)). (27)

In the stationary case (∂F (y, t)/∂t = 0) this equation solves explicitly to

F (y) =
CV

B(y)
Exp(−2V φ(y)), (28)

where φ(y)

φ(y) = −
∫ y

0

A(z)

B(z)
dz (29)

has the meaning of potential. In the case of additive noise, B(y) = B0, φ(y) is proportional to de-

terministic potential φ(y) = −
∫ y
0

(A(z))dz. Analogously to previous section the separatrices Sadditive

and Smultiplicative are given in implicit form by φ(y1) = φ(y3). In Fig. 7 we show them together with

previously determined separatrices Sadiabatic and Scontinuous in y1, y2 plane. In order to calculate these

two new separatrices, we make use of Eqs. 6 giving c0 and c2 as functions of y1, y2 and y3.

The alternative way of calculating separatrices Sadditive and Smultiplicative involves the, so called,

Dynkin equation (dual to Fokker-Plank equation) for the first mean passage time (MFPT) Tθ,γ(y)

from y to the absorbing boundary at y = θ, with the reflective boundary at y = γ (see book of

Gardiner [50] for the MFPT introduction, and [43, 49] for the recent relevant application of this

method):

− 1 = A(y)
∂Tθ,γ(y)

∂y
+

1

2V
B(y)

∂2Tθ,γ(y)

∂y2
. (30)

The boundary conditions are Tθ,γ(θ) = 0, and dTθ,γ/dy = 0 at y = γ. In the low noise limit, the

probability mass fraction concentrated in the vicinity of steady state y1 is (T3→1)/(T3→1 + T1→3),

where T1→3 is the MFPT from y1 to y3 and T3→1 is the MFPT from y3 to y1. To calculate T1→3

we set θ = y3 and γ = 0, while to calculate T3→1 we set θ = y1 and γ = ∞. Our separatrices are

given by equality T3→1 = T1→3 in V →∞ limit. Obviously, MFPTs give more information than just

the probability mass allocation as they account for cell memory, [43]. Times T1→3 and T3→1 may be

obtained in explicit integral forms from the equation 30 [50].
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In summary, using the classical Langevin approach we confirmed that prediction of the most

strongly attracting steady state, strongly depends on assumed noise, here, either additive or multi-

plicative. As one could expect, the additive noise separatrix closely matches with that of continuous

approximation in which noise results solely from gene switching, while the multiplicative noise sep-

aratrix closely match with that of the adiabatic approximation for which the magnitude of noise

grows with the number of molecules. As already said, in original stochastic model the most strongly

attracting steady state is determined by relative magnitude of gene switching, transcriptional and

translational noises, and thus in general it may not be predicted basing on Langevin equation in

which all noise sources are lumped together and replaced by white noise. By considering arbitrary

noise functions we showed recently, that any steady state can became a global stochastic attractor

for particular choice of noise [51].

2.4. Three-stage model

In this section we consider a more detailed model of an autoregulatory gene and demonstrate

that the choice of the most strongly attracting steady state is governed by the relative magnitudes of

gene switching, transcriptional and translational noises. The following three processes are included

in the model: the gene activation/inactivation, mRNA transcription and protein translation, Fig.

8. The mRNA is synthesized with the rate constant Q1 and is degraded with the rate constant r1.

The protein is translated on the mRNA template with the rate constant Q2 and is degraded with

the rate constant r2. The transcriptional and translational noise are characterized, respectively, by

parameters ε1 = r1/Q1 and ε2 = r2/Q2. Thus the characteristic number of proteins (achieved when

the gene is turn on for infinitely long time) is equal to N = 1/(ε1ε2). As in the previous model we

assume that the gene may be in one of two states: inactive G = 0 (no mRNA synthesis), or G = 1 –

active due to binding of its own protein or some transcription factor implicitly present in the model at

constant concentration. The transition from state G = 0 to G = 1 proceeds with rate c0+(c2/N
2)Y 2,

(where Y is the number of proteins), while the transition from G = 1 to G = 0 proceeds with constant

rate b0. The coefficient c2 describing cooperative autoactivation scales with N2, which is equivalent

to the assumption that protein binding rate is proportional to the concentration rather than to the

number of molecules. It is assumed that the cell size is proportional to the characteristic protein

number N . As in the previous model the gene switching noise is characterized by the parameter

σ = 1/b0. The model defines a time continuous Markov process described by three random variables:

the gene state G(t) ∈ {0, 1}, number of mRNA molecules X(t) ∈ N and number of proteins Y (t) ∈ N.

The assumed reaction rate constants are listed in the Table 1. For a non-dimensional analysis we

chose time units in which r2 = 1 (third column). Parameter values for prokaryotes and eukaryotes are

calculated by assuming r2 = 10−4/s. As discussed in the Introduction, prokaryotes are characterized

by large transcriptional and translational noise, while eukaryotes have larger gene switching noise.

Therefore, in the example shown in Fig. 9, we assume for bacteria ε1 = ε01, ε2 = ε02, σ = σ0/100

and for eukaryotes ε1 = ε01/5, ε2 = ε02/25, σ = σ0, where ε01 = 1/15, ε02 = 1/75 and σ0 =
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1/50. Parameters ε01, ε02 and σ0, will be referred to as default parameters. They are so chosen

that the SPD corresponding to the Markov process is bimodal, and the probability mass is equally

distributed between two basins of attraction, Fig. 9A. Fig. 10 shows stochastic simulation trajectory

corresponding to the SPD shown in Fig. 9A.

In the σ → 0, ε1 → 0 and ε2 → 0 limit, the considered Markov process for X(t), Y (t) can

by approximated by the system of two ordinary differential equations for scaled variables x(t) =

ε1X(t), y(t) = ε1ε2Y (t)

dx

dt
= r1(G(y)− x) where G(y) =

c0 + c2y
2

c0 + c2y2 + b0
, (31)

dy

dt
= r2(x− y). (32)

In a relatively broad range of parameters the above system exhibits bistability. The stable steady

states with high and low protein concentration will be referred to as active and inactive, respectively.

For assumed parameters (Table 1) the three steady states are:

Inactive: x1 = 0.03, y1 = 0.03;

Unstable: x2 = 0.26, y2 = 0.26;

Active: x3 = 0.71, y3 = 0.71.

Let us note that stationary solutions of the system (31-32) depend only on c0/b0 and c2/b0, i.e. are

independent to noise parameters σ, ε1, ε2. Noise parameters, however, influence the SPD. As shown

in Fig. 9, the SPD for default noise parameters (Table 1) is bimodal with the probability mass equally

distributed between two basins of attraction, Fig. 9A. Decrease of the gene switching noise σ (with

the transcriptional and translational noises kept constant) causes that probability mass concentrates

in the inactive state, Fig. 9B. In contrast, decrease of the transcriptional noise ε1 (with the gene

switching and translational noises kept constant) causes that the probability mass concentrates in

the active state, Fig. 9C. Decrease of the translational noise (simultaneously with transcriptional

noise) does not significantly influence the SPD, Fig. 9D. Considering this observation, we focus on

the normalized transcriptional to gene switching noise ratio, defined as R = ε1/ε01
σ/σ0

. In Fig. 11 we

analyze the mass fraction of the SPD in the basin of attraction of the inactive state, S1, as a function

of R. Fraction S1 approaches unity as R−1 → 0 (for fixed ε1 and ε2) and approaches zero as R→ 0

(for fixed σ). The results presented in Figs. 9 and 11 demonstrate that the type of dominating noise

determines the most strongly attracting steady state. The small R (transcriptional to gene switching

noise ratio), characteristic for eukaryotes, promotes gene activation. In turn, large R, characteristic

for bacteria, promotes gene inactivation.
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3. CONCLUSIONS

We considered two models of a self-regulating gene with underlying bistability. In the simplified

two-stage model, the transcription and translation processes were lumped together, which allowed

for the analytical approach. Next, we considered the three-stage model with three types of noise;

transcriptional and translational – due to the limited number of mRNA and protein molecules,

and the gene-switching noise – due to gene activation and inactivation. Analysis of both models

demonstrated that the relative magnitudes of transcriptional and translational, and gene switching

noise determine how the SPD is allocated between the two basins of attraction. We found that

the low ratio of transcription to gene switching noise (R) promotes gene activation, while large R

promotes gene inactivation.

Behavior of living cells is inherently associated with noise, which can be either perceived as an

obstacle to accurate signal processing, or as a necessary factor introducing heterogeneity in cell

populations. Noise enables cells to explore the state space, and allocates the cell population between

the local optima - the epigenetic attractors. In this study we demonstrated that in the given epigenetic

landscape, defined by the deterministic approximation, the relative occupancy of the attractors is

controlled by the type of noise, even in the limit in which noise amplitude converges to zero. The

theoretical consequence of our finding is that the prediction of the most strongly attracting steady

state or global attractor in the classical Langevin approach, in which all noise sources are replaced

by white noise, may not, in general, be correct. Observation that the most strongly attracting steady

state, is controlled by relative contributions of the gene switching and transcriptional noise may be

exploited in synthetic biology, which enables controlling the magnitudes of different noise sources

in designed systems; see eg. [11, 12] where transcription and translation rates were independently

modulated.

As already said the dominant noise is cell type-specific. The process of gene expression, analyzed

in this study, involves at least three types of noise: gene-switching, transcriptional and translational.

Eukaryotic and prokaryotic cells differ significantly in their gene expression noise characteristics. In

eukaryotes, the most important source of noise are infrequent transitions between the on and off

states [5, 23]. In turn due to a large volume and correspondingly a large number of mRNA and

proteins, the transcriptional and translational noises are relatively low. In the model the larger

number of mRNA and protein was achieved by the increase of mRNA transcription and protein

translational rate constants, which reflects the higher number of mRNA polymerases and ribosomes

in eukaryotic cells. In prokaryotic cells gene activation and deactivation are thought to be very

fast due to small volume, which implies easier contact and more frequent binding of transcription

factors to the gene promoters. Thus, the gene switching noise in prokaryotes is typically low. Due

to the small number of mRNA molecules and proteins, the gene expression noise in prokaryotic

cells originates mostly from the transcription and translation events [13]. As a result eukaryotes,

compared with prokaryotes, have a lower ratio of transcriptional to gene switching noise, which as
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demonstrated in this study promotes activation of autoregulatory genes.

In our study we concentrate on the the gene expression noise, which is the most ubiquitous, but

not always dominant source of noise in cell signaling. Earlier, we theoretically then experimentally

demonstrated that at low dose TNFα stimulation, noise associated with stochastic receptor activation

dominates over gene expression noise in NF-κB system [20, 52]. As a result, at low dose stimulation,

individual cell responses became highly asynchronous, with fraction of responding cells decreasing

with the stimulation dose [52, 53].

Noise characteristics are not only cell type-specific, but may also change during the cell cycle and

development. This opens the possibility that relative occupancy of steady states may be actively

controlled by noise. For example cell volume growth in G1 phase and DNA replication in S phase

asynchronously modify the relative contributions of gene switching, transcriptional and translational

noises. Much larger changes in noise magnitude and its characteristics accompany embryogenesis

in fruit fly or frog. In the first case nuclear divisions (mitoses) begin following fertilization, but are

not accompanied by division of cytoplasm (cytokinesis). Only after thirteen mitotic divisions, the

approximately 6000 nuclei are partitioned into separate cells [54]. In the case of frog embryogenesis

the huge egg is converted into a tadpole consisting of millions of much smaller cells containing

the same amount of organic matter [55]. One might speculate that changes in noise magnitude and

characteristics add to the formation of morphogen gradients (changing relative stability of predefined

steady states) initiating body segmentation and cell differentiation. Such mode of control, would

require a more precise tuning of parameters than the simple tilting of the epigenetic landscape.

However, it would have the advantage of keeping the epigenetic attractors (potentially the most

plausible states) unchanged, with simultaneous modification of their relative occupancy.
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Tables

Table 1. Model parameters

Name Symbol Non-dimensional Value for bacteria Value for eukaryotes

value

transcriptional noise ε01 1/15

default value

translational noise ε02 1/75

default value

gene switching noise σ0 1/50

default value

transcriptional noise ε1 ε01 ε01/5

translational noise ε2 ε02 ε02/25

gene switching noise σ σ0/100 σ0

protein degradation r2 1 10−4/s (a) 10−4/s (b)

mRNA degradation r1 10r2 10−3/s (c) 10−3/s (d)

inducible c2 4.8r2(ε1ε2)
2/σ 1.9× 10−6/s (e) 1.2× 10−12/s (f)

gene activation

basal c0 0.027r2/σ 0.0135/s (g) 0.000135/s (g)

gene activation

gene inactivation b0 r2/σ 0.5/s (g) 0.005/s (g)

mRNA transcription Q1 r1/ε1 0.015/s (h) 0.075/s (i)

protein translation Q2 r2/ε2 0.0075/s (j) 0.1875/s (k)

mRNA number in 0.03/ε1 0.5 2.28

inactive (active) state (0.64/ε1) (10.6) (l) (53.2) (m)

protein number in 0.03/ε1ε2 34.3 4290.1

inactive (active) state (0.64/ε1ε2 ) (798.4) (n) (99799.4) (o)

(a)Most of bacterial proteins are very stable, with degradation rate constants: 1.4 × 10−5/s ÷ 5.6 × 10−5/s

[56]. Some proteins have much higher degradation rates. E. coli RNase R has degradation rate constant

of 10−3/s (in exponential phase) [57], factor σ32 has degradation rate constant of 10−2/s (in steady-state

growth phase) [58].
(b)Mammals: protein degradation rate constants: 1.7× 10−6/s÷ 1.7× 10−3/s [59].
(c)The vast majority of mRNAs in a bacterial cell are very unstable, having a half-life of about 3 minutes

(decay rate constant 3× 10−3/s) [60]. E. coli: mRNA half-lives span between 1 and 18 minutes (decay rate

constants 10−2/s÷ 6× 10−4/s) [61].
(d)The eukaryotic mRNAs are more stable than prokaryotic with half-lives exceeding 10 hours (decay rate

constant 2×10−5/s). However many have half-lives are of order of 30 minutes (decay rate constant 3×10−4/s)

or less [60]. Mammalian mRNA degradation rate constants: 1.7× 10−5/s÷ 1.7× 10−3/s [59].

20



(e)For 1 µm3 cell volume (bacterial cell) c2 = 6.9/(µM2 × s).
(f)For 2× 103 µm3 cell volume (mammalian cell) c2 = 1.7/(µM2 × s).
(e),(f),(g)For prokaryotes gene switching is faster than for eukaryotes [2]. Slow gene switching in eukaryotes is

causing large mRNA bursts [5]. However, the transcriptional bursting was also observed at E. coli promoter

[62].
(h)For E. coli the maximal transcription rate constant: 0.84/s [63].
(i)For eukaryotes the maximal transcription rate constant: 0.84/s [64].
(j)Translation initiation intervals are specific for each mRNA [65]. E. coli: translation initiation rate con-

stant may vary at least 1000-fold [66]; examples of translation initiation frequencies; β-galactosidase: 0.31/s

(spacing between ribosomes: 110 nucleotides), galactoside acetyltransferase: 0.06/s (spacing between ribo-

somes: 580 nucleotides) [63]; maximal peptide chain elongation rate: 20aa/s [67, 68]; average peptide chain

elongation rate: 12aa/s [63].
(k)Translation rate constant for eukaryotes: 0.018/s÷ 1.8/s [69].
(l)E. coli: average mRNA copy number: 10−4 ÷ 5 molecules/cell [13].
(m)Mammals (mice): average mRNA copy number observed in natural transcriptomes: 0.5 ÷ 5 × 104

molecules/cell [70], [71].
(n)E. coli: average protein copy number: 10−1 ÷ 104 molecules/cell [13].
(o)Mammals: the maximal protein copy number: 108 molecules/cell [72]. Most of yeast genes: 103− 5× 104

molecules/cell [73].
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Figure 1. Two-stage gene expression model. (A) Schematic of