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Abstract: This review presents the use of Dynamic Lattice Liquid (DLL) model 
proposed by Pakula and coworkers. In the model polymer liquids are represented 
as dense systems of macromolecules. The model fulfils requirements of the local 
continuity and excluded volume conditions. The use of the model for numerical 
simulations of simple liquids, colloidal particles systems, solutions of linear 
polymers, branched like bottle-brush or star shaped polymers is described. The 
use of simulations for the prediction of the properties of the systems and their 
experimental validation is described. The model is presented as an universal tool 
for investigation of different systems that provides good agreement between 
numerical and experimental results for a broad range of the systems and 
conditions. 

 
Introduction 
Computer simulations have become recently one of the most important tools in the 
polymer research. They allow to inspect molecular structure and dynamics behaviour 
in the specified conditions. Computer simulated properties of molecules of designed 
structure that cannot be easily synthesized by the use of known methods, can be 
easily generated by computer with proper simulation algorithm. It is possible to 
numerically evaluate the structures and their dynamic behaviour in different external 
conditions. It is expected that such research will help to identify polymer structures of 
new and interesting properties and to direct the syntactical efforts.  
Many Monte Carlo algorithms are used for simulations of static and dynamics 
properties of macromolecular systems on the lattice, but only few of them can be 
used if density coefficient ρ=1. Polymer chains exist mainly in a condensed form 
(solution, melt, glass, crystal) that inhibits their movements and correlates them with 
the movements of surrounding molecules. Therefore the polymer simulations require 
algorithms that work at density coefficient equal to unity. This density coefficient 
value means that every particular lattice site is occupied by the kinetic element. In 
such systems cooperation dynamics applies based on a rule that the movements 
maintain local density of a simulated system and no empty volumes in the lattice are 
generated. The movements are realized by local cooperative motions formed by 
dislocations of specified number of elements at closed loops. Any element is 
replaced by one of its neighbours, and the continuity condition is maintained, i.e. the 
amount of displacements of the elements taking part in the permutation equals to 
zero. During such rearrangements, the models of macromolecules are subjected to 
conformational changes with retention of their structural identity – the number and 
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the order of elements in polymer as well as topology of skeleton bonds that form 
macromolecule are not changed. Polymers exhibit composite structure often 
extended on different dimensions scale, and composite dynamics behaviour that 
includes relaxation in broad time scale. The novel Dynamic Lattice Liquid (DLL) 
model invented by Pakula [1,2] includes this requirements and allows to simulate 
both, single macromolecules of composite polymers as well as various polymer 
systems. Numerous papers has been published recently to evaluate the compatibility 
of this model with experimental results. The purpose of this review is to summarize 
the results of these reports with a particular interest paid to the possibilities of 
evaluation of the DLL model. The model evaluations described both, static properties 
(the mean squared radius of gyration, the mean squared end-to-end distance) as well 
as kinetic properties (the mean square displacements of chain centre of mass, the 
autocorrelation function of the end-to-end vector of the chains) for materials like 
simple supercooled liquids, polymer melts of different topology and microgels.  
 
Method 
Molecular elements in the simulations are assigned to a lattice sites and represent 
polymer macromolecules as beads jointed by non-breakable bonds. In the DLL 
model, the mechanism known as CMA (Cooperative Motion Algorithm) is applied. A 
single diffusion step bases on the cooperative motions mechanism of the kinetic 
elements and plays important role in the global relaxation process. The CMA 
algorithm consists of the following steps in the computer simulation: 

1) creation of a vector field that represents the movement attempts,  
2) elimination of inefficient movement attempts, 
3) movement of beads along the paths of closed loops, i.e. efficient 

movement attempts.  
 

 
 

Fig. 1. Illustration of the vector field of movement attempts on a triangle lattice 
system that represents a polymer melt. Movement attempts 1,2,3 – unsuccessful, 4 – 
successful.  
 
It is assumed that beads representing kinetic elements of a polymer, or solvent 
molecules, are oscillating with a specified frequency at the lattice sites. They are 
trying to change its position periodically towards one of the nearest neighbours. Such 
attempts are represented by a field of randomly chosen unit vectors that are 
assigned to the lattice sites and illustrate directions of the movements. An example of 
such assignment is shown in Fig.1 for the system that represents a polymer melt on 
the triangle lattice. Any vector that is not taking part in correlated movement loops 
fulfilling the continuity condition is eliminated. The elimination happens in the 
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following cases (see numbers in Fig.1): (1) two neighbouring beads are trying to 
relocate in reverse directions; (2) the movement attempt is starting from a lattice site 
toward the beads which are not attempting to move; (3) the movement would lead to 
breaking the bonds in the polymer chain. Cases (4) in Fig.1 illustrate successful 
movement attempts and are described as 3-rd step in the CMA algorithm. 

The procedure described above requires a single time step of time scale τν. The 
simulation procedure is repeated during consecutive time steps and creates a set of 
randomly selected directions of the movement attempts. Any kinetic element can 
take part in only one movement attempt during a single time step to create self-
avoiding loops. 
A record of the coordinates of the kinetic elements after each time step is used to 
determine characteristic values of the structure and dynamic behaviour of the system 
investigated. 
Structure of the modelled polymer systems can be described by the following 
characteristics:   

- the mean square end-to-end distance of a chain composed of N beads  
<R2> = <(r1 − rN)2>         (1) 
where r1i rN are space coordinates of the chain ends, 

- the mean square radius of macromolecule gyration 
<s2> = <(ri − rcm)2>         (2) 
where rcm represents space coordinates of chain’s mass centre, 

- static form factor 
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where g(rij)=[c(ri)⋅c(rj)]/N is site-to-site correlation function for sites separated 
by the vector rij = ri − rj, and c(r) is a contrast operator assuming values of 
unity for the sites occupied by the molecular elements, and zero for all others 
sites, q – the scattering vector. 

The kinetic behaviour of the modelled systems is described by the following 
characteristics associated with the relaxation times and diffusions:  

- the autocorrelation function of bonds’ orientation  
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where bi(t) is a unit vectors representing i-th bond orientation at time t, n - the 
number of chains, and Nb - the number of bonds in a chain, 

- the autocorrelation function of the end-to-end vectors of the chains 
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where Ri(t) - the end-to-end vector of i-th chain at time t,  
- the mean square displacements of the centre of mass of the whole 

macromolecule 



4 
 

[ ]∑ −=><
i

icmicmcm t
n

tr 2
,,

2 )0()(1)( rr       (6) 

where rcm,i(t) – time dependent  coordinates of the centre of mass of i-th chain, 
- the mean square displacements of a monomer  molecule 
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where rm,i(t) - coordinates of a monomer  molecule at time t,  
- the mean square displacements of a solvent molecules 
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where rsol,i(t) - coordinates of i-th solvent molecule at time t, n – the number of 
solvent molecules. 

 
Applications 
The DLL model was applied in [3] for analysis of simple liquids that freeze in a glassy 
form where the authors provided analytical formulae that describe the influence of the 
pressure and temperature on the relaxation time in the systems. In the case when 
the molecular displacements are controlled by the temperature and excluded volume, 
the description of isothermal and isobaric characteristic of structural relaxations is in 
agreement with the experiment results which cannot be explained neither by the 
Arrhenius model with constant activation energy, nor by the free volume model. The 
modelling of middle range order in the glassy substances was analysed in [4]. The 
mixtures of two types of atoms on 2D and 3D lattices at different temperatures, 
composition and density were also simulated. The results are in good agreement with 
the effects observed for inorganic glassy substances.  
Dense systems of colloidal particles that are incompressible but deformable were 
analysed in [5]. Different structural and dynamic states covering the entire structure 
range, from liquid to crystalline, were depicted as a function of both, a deformability 
parameter and the concentration. 
It is shown in [6] that the DLL model is capable to reproduce broad class of different 
temperature vs. relaxation time relationships, from the Arrhenius relationship to the 
Vogel-Fulcher-Tamman (VFT). The degrees of freedom and displacements were 
considered as directed by thermal activation with the energy barriers dependent on 
local density.  
General conditions of simple liquids simulation on different lattices are presented in 
[7]. The interdiffusion coefficients were directly controlled by a change of the 
composition profiles in time. In an athermal case, the interdiffusion and self-diffusion 
coefficients are the same. In reacting mixtures, the interdiffusion was thermally 
activated. 
The DLL model was proposed in [8] as a universal tool for the research on different 
types of aggregation. The model enables simulation of the systems of a constant 
number of particles and presence of a solvent molecules. Fractal growth was 
demonstrated in system of different initial concentrations of particles that were 
forming the clusters. It was shown that the fractal size increases with increasing the 
initial concentration. The simulation presents physically sensible structural and 
dynamic features of such systems. 
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Systematic research on athermal, linear polymer systems using 2D triangle lattice in 
the simulation for different concentrations and different solvents was presented in [9] 
were static and dynamic properties were described. The results depicted molecular 
packing and other properties of a single-molecular polymer layers and could be used 
in designing techniques of thin layer production.  
The simulations of dense systems of flexible and semi-flexible chains were presented 
in [10]. It was noticed that the demixing transition takes place below a certain degree 
of chain flexibility, even without introducing the expulsion forces between the two 
polymers, but with excluded volume condition preserved. Phase concentrations at 
the equilibrium at different temperatures were calculated, as well as the phase 
diagrams were constructed. The results were in a qualitative agreement with the 
Flory lattice theory for stiff chains. The systems of stiff chains were also analysed in 
[11]. The chain stiffness was introduced by two methods - by limiting the deformation 
angles and by placing a large number of side chains anchored to the polymer 
backbone. The dependence of the polymer chain length on the relaxation time was 
analysed numerically and the results were in a good agreement with the 
experimental results. 
Melts of the linear homopolymers were analysed under the shear stress in [12]. 
Simulations were done for the systems of entangled chains built of more than 640 
beads and placed between two parallel walls. The behaviour of the melt under shear 
stress was simulated by setting up the probability of the beads movements. The 
chain dynamics was controlled during achievement of steady-state flow during 
relaxation of the melt. The results were compared with the simulation results 
obtained for non-flowing melts. Chain orientation, coil deformation and relaxation 
were also analysed. Noticeable differences were observed between step-shear and 
steady-states, while the dynamics of the chains during relaxation was almost 
identical with the non-flowing melt. Dynamics of the melt depended strongly on the 
chain length and shear stress, showing non-linear effects for long chains. Relaxation 
time for long chains decreased by orders of magnitude when affected by the shear 
stress creating a power-law dependence. Diffusion of beads and chains was 
analysed and an anomalous diffusion was observed in the flow direction as well as in 
the perpendicular directions. For the flowing melt, a confined space size was 
important, even if the wall spacing was much bigger than the radius of gyration of the 
polymer chains. Comparison of the linear chain systems placed between two parallel 
walls with the unconfined melt structure was done in [13] using the face centred cubic 
(fcc) lattice. The authors have shown that the effect of neutral walls consists mainly in 
reorientation of cigar-shaped chains in the vicinity of the walls, but the dimensions 
and shape of the chains were not affected. The melts composed of chains anchored 
by one end to one of the walls (grafted chains) were examined in [14]. The results 
characterizing the structure of layers, as well as the conformation and orientation of 
the chains were obtained for systems with various chain lengths (40, 80, and 160) 
and various grafting densities (0.25 and 0.5). The simulation results were compared 
with respective characteristics of such layers predicted by the self-consistent field 
(SCF) theory [15]. A good agreement with the theoretical predictions was observed, 
especially for longer chains and higher grafting densities, i.e. for the systems more 
similar to those assumed in the theory.  
Solutions of diblock copolymers in various concentrations and different chain length 
were examined in simulations using 2D lattice [16]. Relationships between diffusion 
coefficients and evolution of concentration profiles were evaluated. A series of 



6 
 

simulations produced to evaluate the relationships between the lattice size and 
properties of diblock copolymer were described in [17]. For all evaluated 3D lattice 
sizes (30x32x30, 40x32x30, 50x32x30, 60x32x30) low temperature interfacial 
ordering was observed. 
Analysis of triblock copolymers A-B-A in various temperatures was described in [18]. 
Energy, specific heat, copolymer end-to-end distance as functions of reduced 
temperature were calculated using CMA algorithm. Temperatures of order-disorder 
transitions were found on phase diagrams.  
Polymer systems of complex topology, like H-shaped or star polymers were 
evaluated in [19]. For star polymers, the influence of number of star arms and their 
length on static and dynamic properties of the modelled systems was analysed in 
[20]. Static properties were characterized by a star size and spatial correlations. 
Dynamic properties described as arms orientation, relaxation and translation 
movement of stars were presented. The results indicate strong ordering effects for 
multi-arm stars in melts and suggest significant influence of arms’ orientation 
relaxation and star translation which depend on the length and number of arms on 
the terminal star relaxation. Polymers of the star structure built of large number of 
linear homopolymer arms attached covalently to a central core can be described as a 
model of soft hybrid spheres that have polymer (arms) and colloid (core) character. 
As a result of this type of topology, single star has diversified arrangement of polymer 
density. In non-dilute solutions, liquid-like order appears as a consequence of growth 
of osmotic pressure and strong entropy-driven arm stretching appears. This type of 
ordering was also maintained in the melt and is caused by influence of excluded 
volume on molecules. As a result, rich dynamic response of the system described in 
[21] exhibited both, the polymer and colloid character. Relaxation of concentration 
and a number of density fluctuations have resulted from the cooperative diffusion, 
self-diffusion and structural relaxation. Final viscoelastic relaxation of the melt 
resulting in the arms relaxation was independent of the number of arms in the 
macromolecule. Structural rearrangements of the stars heavily depended on the 
arms number and size. Identification of the relaxation mechanisms in such a 
composite of soft spheres provided information necessary to design particles and 
control new composite materials possessing the properties of polymers and colloids.  
Analysis of catenanes and comparison of their behaviour with a linear and cyclic 
chains simulated in the same conditions was discussed in [22]. Structural and 
dynamic characteristics of fused rings were shown as a function of size and number 
of rings. It was found that higher complexity of the catenanes architecture, in 
comparison with linear or cyclic chains, makes the molecular dynamics much more 
complex with considerable slowing down of the relaxation of whole macromolecules. 
The results have shown that catenanes exhibit some specific properties that cannot 
be found in either, linear or cyclic polymer chains. 
In [23] macromolecules of bottle-brush topology under the conditions of a good 
solvent were investigated by the scattering methods (SAXS, SANS, SLS), as well as 
by the numerical simulations. Molecular architecture parameters, such as polymer 
backbone length, side chain length and stiffness, varied in the research 
systematically. Consistent description of the form factors was achieved by 
considering of the polymer macromolecules as flexible cylinders with a density 
fluctuation inside. The model leads to direct conclusions on the parameters, such as 
persistent brush length, describing general shape of the polymer macromolecule. 
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Indirect conclusions on the side-chain effect and the polymer backbone conformation 
were also drawn. The results were in a good agreement with the experimental data. 
The simulation method used gave direct access to the pairs correlation functions that 
allowed to find the macromolecule form factor independently. The most important 
parameter for liotropic behaviour of the bottle-brush polymers is the persistent length-
to-diameter ratio that has a value of 10 or more. The influence of molecular 
architecture parameters on the stiffness of the macromolecule was also investigated 
and the experimental results on liotropic behaviour of polymers presented.  
Non-linear highly branched polymers were investigated in [24] by low angle SAXS 
scattering and DMS spectroscopy, as well as by the computer simulation. The results 
have shown that the consequence of complex polymer topology is a specific 
intramolecular monomer density distribution. Polymers with complex architecture 
represent soft objects which order on macromolecular scale because of strong steric 
interactions. The simulation results are capable to represent the structure and 
dynamics of the considered systems. 
Configurational properties of macromolecules of highly charged polyelectrolytes 
accompanied by neutralizing counterions in diluted solutions were simulated by the 
CMA algorithm using fcc lattice in [25]. The whole Coulomb potential and the 
influence of excluded volume between the ions was taken into consideration, and the 
main varied parameter was a reduced temperature T*. Calculations made for 
solutions of single chains and systems of several chains distinguished several ranges 
of properties: (a) the case of T* →∞ describes neutral polymers under good solvent 
conditions; (b) T*≈1 corresponds to effectively stronger electrical repulsion making 
the chains more stretched comparing to their shape in other temperatures; (c) T*<<1 
corresponds to dominant counterions coupling leading to strong collapse of the 
chains structure; (d) at the lowest temperatures examined, the chains and the 
counterions are adopting low energy configurations as neutral aggregates.  
Calculations provided in [26] showed that negative and positive ions were localized 
onto polymer chains at sufficiently low temperatures. Their number was function of 
the salt type added. As the temperatures decreased, the chains were subjected to 
conformational changes from neutral polymers through more stretched forms, finally 
reaching the conformation of wrapped spheres. The chain stretching in the middle 
range temperatures was influenced by the salt added. The influence of the salt 
valance was also analysed in two fixed temperatures in [27]. The calculations 
indicated that the addition of small amount of multivalent salt has a tremendous 
influence onto a polymer macromolecules conformation, especially in lower 
temperatures. 
 
Results 
One of the most analysed properties with the use of the DLL model was the 
molecular relaxation time (system dynamics) and the diffusion constant (static 
properties). A local mobility of the system was estimated basing on the site-to-site 
autocorrelation function. The autocorrelation function of the end-to-end vectors 
allowed estimation the chain relaxation time. The diffusion constants were 
determined based on the mean-square translation of the centre of mass or the chain 
segments.  

Point-to-point autocorrelation functions ρ(t) as functions of time were almost 
exponential on the semi-logarithmic graph, as shown in Fig. 2. For single beads, 
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possible temperature dependent intermolecular interaction and beads mobility can be 
introduced to the model by the term p that modifies a bond constant, thus changing 
the system dynamics [7]. 
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Fig. 2. Point-to-point autocorrelation functions, ρ(t), vs. time. Solid lines - single 
beads with limited mobility [7], (p=1 - unlimited, p=0.5 - half of the lattice site 
available, p=0.25 one out of 4 positions available). Dotted lines - linear chains of 
N=40 beads and different stiffness [11]. Circles - solution of a linear polymer N=16, 
concentration c=0.6 (open symbols - autocorrelation function for solvent molecules, 
filled symbols - for polymer molecules) [16]. Stars - solution of a 24 arms star 
polymer; arm length: 20 beads [19-21]. 
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Fig. 3. The polymer end-to-end vector autocorrelation functions (for stars - centre-to-
arm end vector) vs. time. Solid lines - linear chains of N=40 beads and various 
stiffness [11]. Circles - solution of N=16 polymer (open symbols - concentration 
c=0.1; filled symbols - c=0.95) [9]. Stars - star polymer solution [21]. 
 
Comparison of the influence of the accessibility parameter p with the results for star 
polymers for which local mobility was almost independent of the type and size of the 
molecule, as well as for the stiff polymers [11], shows a good agreement with that 
predicted for single beads with p=0.5 (half of the lattice sites available) (Fig. 2). Also 
for polymer solutions, local mobility of the solvent is close to that predicted for single 
beads with p=0.5, while the mobility of polymer molecules is comparable with that for 
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the beads with p=0.25. For flexible polymers local mobility is greater than for 
stiffness, of course.  
 
Figure 3 shows end-to-end vector autocorrelation functions for different polymer 
systems. As expected, the relaxation time noticeably increased with the increase of 
polymer chain length [12], the influence of the chain stiffness is less important, and 
the polymer concentration has the least important influence [9]. The arms' relaxation 
for the star polymers is not considerably dependent on the arm length [21] and 
therefore only one example of the curve is presented in Fig. 3. 
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Fig. 4. Diffusion constant, D, vs. number of kinetic elements in the molecule, N. Open 
symbols - stars of a various arm length, Na [20]. Solid lines - influence of the polymer 
stiffness [11]. Filled symbols - solutions of linear polymers of different concentration 
[9]. 
 
Strong changes of a global dynamics of composite macromolecular objects, like star 
polymers, can be achieved by variation of two parameters - arms number and length, 
even if the mass of the molecule remains unchanged (Fig. 4). An increase of arms 
number with constant arm length causes denser intramolecular packing and 
noticeably reduces the arm relaxation time. On the other hand, the change of the arm 
length, with the number of arms remaining unchanged, caused results similar to 
those observed for linear polymer chains [6, 20]. The polymer stiffness has also a 
great influence on the diffusion constant [11].  
Self-diffusion constants of a monomer for each chain length weakly depends on the 
concentration, however it decreases sharper when the concentration becomes 
greater than 0.6. The reason is that in the neighbourhood of a monomer more 
polymer segments can be found, so the cooperative movements incorporated both, 
the solvent and the monomer. The dependence of self-diffusion constants of the 
polymer chains on the polymer concentration has a similar character for different 
chain lengths. Global chain dynamics in the solutions is defined by confinement of 
the solvent molecules between and inside the chains. Thus, for small concentrations, 
long-time solvent dynamics is not considerably influenced by the chain length and is 
similar to the local chain dynamics, due to free movement of solvent molecules 
between the chains. For high concentrations of the polymer, the influence of the 
chain length on the solvent dynamics is stronger as caused by the confinement of the 
solvent molecules. Therefore, in the inspected range of polymer concentrations, the 
dynamics of solvent molecules is defined by the polymer chains dynamics [9]. 
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Diffusion of the chains in the flowing melt was strongly modified by the shear stress, 
including the displacements perpendicular to the shear direction. The diffusion of the 
chains’ centre of mass shows an anomalous behaviour (sub- or superdiffusion) in all 
directions as a result of the space confinement and shear [12]. 
 
Conclusions  
The DLL model represents polymer liquids as dense systems of macromolecules that 
fulfil the requirement of local continuity and the excluded volume condition during 
relocation of the beads and local density fluctuations. The model bases on the 
microscopic mechanism and can be applied as algorithm for simulations of a real 
structure in the systems from simple liquids to polymer melts. The limitations in 
application of the DLL model are associated with available computing power, but the 
model has a unique ability of parallel consideration of all system elements and is far 
computationally effective in comparison with other models, e.g. the molecular 
dynamics. 
For polymer macromolecules with a composite and compact architecture, the 
dynamic behaviour on the macromolecular scale corresponds to the mechanism of 
the Cooperative Motion Algorithm in the segmental scale. It suggests that 
macromolecular dynamics is controlled by the same effects as in the segmental 
scale, i.e. by strong exclude volume interactions at dense packing and the continuity 
condition maintained. The CMA approach can be applied for simulations of different 
types of macromolecules of composite structure and should be suitable, especially 
for the systems with dense intermolecular packing.  
Macromolecules of different topology can be represented by a lattice structure with 
the beads connected by non-breakable bonds in a way corresponding to the 
backbone contours. Structure and dynamic properties of differently branched 
macromolecules can be analysed vs. various parameters of the molecular structure, 
e.g. the arm length and number of arms for star polymers. 
The simulations of polymer solutions based on the DLL model provide the results 
consistent with the experimental data. One of the most interesting implementations of 
the model is the research on the effects of polymer chain length and concentration on 
local and global system dynamics. It is practically impossible to obtain such 
information by the use of other simulation methods that base on oversimplified 
models, from the point of view of the computation time. Wide applicability of the 
model could be of fundamental importance for material engineering and allows 
investigation of structure and properties of materials. 
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